Unsupervised Learning with Truncated Gaussian Graphical Models

被引:0
|
作者
Su, Qinliang [1 ]
Liao, Xuejun [1 ]
Li, Chunyuan [1 ]
Gan, Zhe [1 ]
Carin, Lawrence [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27706 USA
关键词
BELIEF; SIMULATION; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaussian graphical models (GGMs) are widely used for statistical modeling, because of ease of inference and the ubiquitous use of the normal distribution in practical approximations. However, they are also known for their limited modeling abilities, due to the Gaussian assumption. In this paper, we introduce a novel variant of GGMs, which relaxes the Gaussian restriction and yet admits efficient inference. Specifically, we impose a bipartite structure on the GGM and govern the hidden variables by truncated normal distributions. The nonlinearity of the model is revealed by its connection to rectified linear unit (ReLU) neural networks. Meanwhile, thanks to the bipartite structure and appealing properties of truncated normals, we are able to train the models efficiently using contrastive divergence. We consider three output constructs, accounting for real-valued, binary and count data. We further extend the model to deep constructions and show that deep models can be used for unsupervised pre-training of rectifier neural networks. Extensive experimental results are provided to validate the proposed models and demonstrate their superiority over competing models.
引用
收藏
页码:2583 / 2589
页数:7
相关论文
共 50 条
  • [41] TREK SEPARATION FOR GAUSSIAN GRAPHICAL MODELS
    Sullivant, Seth
    Talaska, Kelli
    Draisma, Jan
    [J]. ANNALS OF STATISTICS, 2010, 38 (03): : 1665 - 1685
  • [42] Testing Unfaithful Gaussian Graphical Models
    Soh, De Wen
    Tatikonda, Sekhar
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [43] GROUPS ACTING ON GAUSSIAN GRAPHICAL MODELS
    Draisma, Jan
    Kuhnt, Sonja
    Zwiernik, Piotr
    [J]. ANNALS OF STATISTICS, 2013, 41 (04): : 1944 - 1969
  • [44] On the impact of contaminations in graphical Gaussian models
    Gottard A.
    Pacillo S.
    [J]. Statistical Methods and Applications, 2007, 15 (3): : 343 - 354
  • [45] On generating random Gaussian graphical models
    Cordoba, Irene
    Varando, Gherardo
    Bielza, Concha
    Larranaga, Pedro
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 125 : 240 - 250
  • [46] Gaussian Approximation of Collective Graphical Models
    Liu, Li-Ping
    Sheldon, Daniel
    Dietterich, Thomas G.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1602 - 1610
  • [47] Symmetries in directed Gaussian graphical models
    Makam, Visu
    Reichenbach, Philipp
    Seigal, Anna
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 3969 - 4010
  • [48] Lattices of Graphical Gaussian Models with Symmetries
    Gehrmann, Helene
    [J]. SYMMETRY-BASEL, 2011, 3 (03): : 653 - 679
  • [49] Graphical models for sparse data: Graphical Gaussian models with vertex and edge symmetries
    Hojsgaard, Soren
    [J]. COMPSTAT 2008: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2008, : 105 - 116
  • [50] Asymptotic Bayesian structure learning using graph supports for Gaussian graphical models
    Marrelec, Guillaume
    Benali, Habib
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (06) : 1451 - 1466