Thermoelectric Generator Using Space Cold Source

被引:51
|
作者
Xia, Zhilin [1 ]
Zhang, Zhenfei [1 ]
Meng, Zhenghua [2 ]
Ding, Liyun [3 ]
Yu, Zhongquan [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Sch Automot Engn, Wuhan 430070, Hubei, Peoples R China
[3] Wuhan Univ Technol, Natl Engn Lab Fiber Opt Sensing Technol, Wuhan 430070, Hubei, Peoples R China
关键词
thermoelectric generator; space cold source; radiative cooling; Bi2Te3; Sb2Te3; silica film; ENERGY; TEMPERATURES;
D O I
10.1021/acsami.9b10981
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Most of the renewable and sustainable natural energy is distributed uneven on the earth in time and space. Here we proposed a new kind of thermoelectric generator, which can use the temperature difference caused by passive cooling via the atmospheric window. This generator can continuously output electric energy anywhere 24 h a day independent of the existence of any natural or manmade energy resource. A test generator with two couples of n-p thermoelectric legs has been prepared. The created average temperature difference is 4.4 K and average voltage is 1.78 mV in a whole day. This design paves a path to the pollution-free and sustainable power generation which is not restricted by time and space and not consuming any existing energy resource.
引用
收藏
页码:33941 / 33945
页数:5
相关论文
共 50 条
  • [21] Optimum variables selection of thermoelectric generator-driven thermoelectric refrigerator at different source temperature
    Chen, Lingen
    Meng, Fankai
    Ge, Yanlin
    Sun, Fengrui
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2012, 33 (03) : 108 - 117
  • [22] Performance evaluation of thermoelectric generator using CFD
    Bejjam, Ramesh Babu
    Dabot, Mulusew
    Wondatir, Tesfaye
    Negash, Sase
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 2498 - 2504
  • [23] Eletricity Generation Using Thermoelectric Generator - TEG
    Stecanella, Priscilla A. J.
    Faria, Messias A. A.
    Domingues, Elder G.
    Gomes, Pedro H. G.
    Calixto, Wesley P.
    Alves, Aylton J.
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (IEEE EEEIC 2015), 2015, : 2104 - 2108
  • [24] Energy conversion using new thermoelectric generator
    Savelli, G.
    Plissonnier, M.
    Bablet, J.
    Salvi, C.
    Fournier, J. M.
    DTIP 2006: SYMPOSIUM ON DESIGN,TEST, INTEGRATION AND PACKAGING OF MEMS/MOEMS 2006, 2006, : 369 - +
  • [25] Factors influencing the thermoelectric characteristics of a thermoelectric generator with cold-side micro heat pipe arrays
    Li, Teng
    Fu, Yang
    Dong, Cong
    Li, Dongshuang
    Gu, Huaduo
    Ye, Yanghui
    JOURNAL OF POWER SOURCES, 2023, 557
  • [26] Development of a Small-Low Power Radioisotope Thermoelectric Generator Using the General Purpose Heat Source
    Sherick, Kenton
    Ray, Aniruddha
    Berneron, Pierre
    Tolson, B. Allen
    Whiting, Christofer E.
    Hoffman, Rebecca
    den Heijer, Maarten
    Barklay, Chadwick D.
    2024 IEEE AEROSPACE CONFERENCE, 2024,
  • [27] Study on The Heat Source and Heat Sink for Micro Thermoelectric Generator Device
    Song Ruiyin
    Wang Xiancheng
    MNHMT2009, VOL 2, 2010, : 377 - 382
  • [28] Stretchable thermoelectric generator for wearable power source and temperature detection applications
    Shi, Yaoguang
    Lu, Xiaozhou
    Xiang, Qingpei
    Li, Jing
    Shao, Xiaojun
    Bao, Weimin
    ENERGY CONVERSION AND MANAGEMENT, 2022, 253
  • [29] Gating signal generator for multiphase voltage source inverters using space vector PWM
    Hu, Jwu-Sheng
    Chen, Keng-Yuan
    PROCEEDINGS OF THE 2011-14TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE 2011), 2011,
  • [30] Development and improvement of thermoelectric generator modules for a space nuclear power system
    A. I. Markoliya
    N. M. Sudak
    E. P. Sabo
    S. P. Krivoruchko
    T. S. Vekua
    N. M. Grechko
    Yu. I. Dudarev
    M. Z. Maksimov
    A. U. Surovtseva
    A. A. Chilikidi
    V. E. Shamba
    R. R. Shvangiradze
    Yu. L. Éloshvili
    Atomic Energy, 2000, 89 : 583 - 586