Description of 2-integer continuous knapsack polyhedra

被引:9
|
作者
Agra, A.
Constantinob, M.
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, CEOC, P-3810193 Aveiro, Portugal
[3] Univ Lisbon, DEIO & CIO, P-1749016 Lisbon, Portugal
关键词
mixed integer programming; polyhedral characterization; single node flow problem;
D O I
10.1016/j.disopt.2005.10.008
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we discuss the polyhedral structure of several mixed integer sets involving two integer variables. We show that the number of the corresponding facet-defining inequalities is polynomial on the size of the input data and their coefficients can also be computed in polynomial time using a known algorithm [D. Hirschberg, C. Wong, A polynomial-time algorithm for the knapsack problem with two variables, Journal of the Association for Computing Machinery 23 (1) (1976) 147-154] for the two integer knapsack problem. These mixed integer sets may arise as substructures of more complex mixed integer sets that model the feasible solutions of real application problems. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 110
页数:16
相关论文
共 50 条
  • [1] Cutting planes for mixed-integer knapsack polyhedra
    Yan, XQ
    Boyd, EA
    [J]. MATHEMATICAL PROGRAMMING, 1998, 81 (02) : 257 - 262
  • [2] Cutting planes for mixed-integer knapsack polyhedra
    Yan, Xiao-Qing
    Boyd, E. Andrew
    [J]. Mathematical Programming, Series B, 1998, 81 (02): : 257 - 262
  • [3] Cutting planes for mixed-integer knapsack polyhedra
    Xiao-Qing Yan
    E. Andrew Boyd
    [J]. Mathematical Programming, 1998, 81 : 257 - 262
  • [4] INTEGER KNAPSACK AND FLOW COVERS WITH DIVISIBLE COEFFICIENTS - POLYHEDRA, OPTIMIZATION AND SEPARATION
    POCHET, Y
    WOLSEY, LA
    [J]. DISCRETE APPLIED MATHEMATICS, 1995, 59 (01) : 57 - 74
  • [5] Computing the continuous discretely, Integer-point enumeration in polyhedra
    Hajnal, Peter
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2009, 75 (1-2): : 364 - 364
  • [6] The intersection of knapsack polyhedra and extensions
    Martin, A
    Weismantel, R
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1998, 1412 : 243 - 256
  • [7] On the capacitated lot-sizing and continuous 0-1 knapsack polyhedra
    Miller, AJ
    Nemhauser, GL
    Savelsbergh, MWP
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 125 (02) : 298 - 315
  • [8] KRULL-SCHMIDT THEOREM FOR 2-INTEGER RATIONAL REPRESENTATION OF 2-GROUP
    GUDIVOK, PM
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR, 1972, (02): : 112 - &
  • [9] ON RECOGNIZING INTEGER POLYHEDRA
    PAPADIMITRIOU, CH
    YANNAKAKIS, M
    [J]. COMBINATORICA, 1990, 10 (01) : 107 - 109
  • [10] ON INTEGER POINTS IN POLYHEDRA
    COOK, W
    HARTMANN, M
    KANNAN, R
    MCDIARMID, C
    [J]. COMBINATORICA, 1992, 12 (01) : 27 - 37