Semi-supervised blockwisely architecture search for efficient lightweight generative adversarial network

被引:14
|
作者
Zhang, Man [1 ,2 ]
Zhou, Yong [1 ,2 ]
Zhao, Jiaqi [1 ,2 ,4 ]
Xia, Shixiong [1 ,2 ]
Wang, Jiaqi [1 ,2 ]
Huang, Zizheng [1 ,3 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] Minist Educ Peoples, Engn Res Ctr Mine Digitizat, Xuzhou 221116, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
[4] Disaster Intelligent Prevent & Control & Emergenc, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Semi-supervised; GANs; Network architecture search; Image generation; Image classification;
D O I
10.1016/j.patcog.2020.107794
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of computer vision, methods that use fully supervised learning and fixed deep network structures need to be improved. Currently, many studies are devoted to designing neural architecture search methods to use neural networks in a more flexible way. However, most of these methods use fully supervised learning at the cost of extraordinary GPU training time. In view of the above problems, we propose a semi-supervised generative adversarial network and search network architecture based on block structure. Use real pictures and generated pictures with corresponding real tags and pseudo tags for training, to achieve the purpose of semi-supervised learning. By setting the layer's hyperparameters to a variable and flexible stacking block structure, network architecture search is achieved. The proposed method realizes image generation and extends to image classification. In the experimental results in Section 4, the training time is greatly reduced and the model performance is improved, which illustrates the efficiency of our method. The code can be found in https://github.com/AICV-CUMT/STASGAN . (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Generative adversarial network for semi-supervised image captioning
    Liang, Xu
    Li, Chen
    Tian, Lihua
    Computer Vision and Image Understanding, 2024, 249
  • [2] Semi-Supervised Generative Adversarial Network for Gene Expression Inference
    Dizaji, Kamran Ghasedi
    Wang, Xiaoqian
    Huang, Heng
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1435 - 1444
  • [3] GENERATIVE ADVERSARIAL SEMI-SUPERVISED NETWORK FOR MEDICAL IMAGE SEGMENTATION
    Li, Chuchen
    Liu, Huafeng
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 303 - 306
  • [4] SVGAN: Semi-supervised Generative Adversarial Network for Image Captioning
    Zhang, Yi
    Zeng, Wei
    He, Gangqiang
    Liu, Yueyuan
    2020 IEEE CONFERENCE ON TELECOMMUNICATIONS, OPTICS AND COMPUTER SCIENCE (TOCS), 2020, : 296 - 299
  • [5] Medical image segmentation with generative adversarial semi-supervised network
    Li, Chuchen
    Liu, Huafeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (24):
  • [6] Optimization of semi-supervised generative adversarial network models: a survey
    Ma, Yongqing
    Zheng, Yifeng
    Zhang, Wenjie
    Wei, Baoya
    Lin, Ziqiong
    Liu, Weiqiang
    Li, Zhehan
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2024, : 705 - 736
  • [7] Generative Adversarial Training for Supervised and Semi-supervised Learning
    Wang, Xianmin
    Li, Jing
    Liu, Qi
    Zhao, Wenpeng
    Li, Zuoyong
    Wang, Wenhao
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [8] Quantum semi-supervised generative adversarial network for enhanced data classification
    Nakaji, Kouhei
    Yamamoto, Naoki
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [9] Quantum semi-supervised generative adversarial network for enhanced data classification
    Kouhei Nakaji
    Naoki Yamamoto
    Scientific Reports, 11
  • [10] A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK FOR PREDICTION OF GENETIC DISEASE OUTCOMES
    Davi, Caio
    Braga-Neto, Ulisses
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,