Contractibility and connectedness of efficient point sets

被引:8
|
作者
Zheng, XY [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Peoples R China
基金
中国国家自然科学基金;
关键词
efficient point set; positive proper efficient point set; contractibility; connectedness;
D O I
10.1023/A:1004649928081
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Using the technique of space theory and set-valued analysis, we establish contractibility results for efficient point sets in a locally convex space and a path connectedness result for a positive proper efficient point set in a reflexive space. We also prove a connectedness result for a positive proper efficient point set in a locally convex space; as an application, we give a connectedness result for an efficient solution set in a locally convex space.
引用
收藏
页码:717 / 737
页数:21
相关论文
共 50 条
  • [21] Efficient Learning on Point Sets
    Xiong, Liang
    Poczos, Barnabas
    Schneider, Jeff
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 847 - 856
  • [22] Ri-SETS, PSEUDO-CONTRACTIBILITY AND WEAK CONTRACTIBILITY ON HYPERSPACES OF CONTINUA
    Capulin, Felix
    Juarez-Villa, Leonardo
    Orozco-Zitli, Fernando
    GLASNIK MATEMATICKI, 2018, 53 (02) : 359 - 370
  • [24] CONNECTEDNESS PROPERTIES OF EFFICIENT AND MINIMAL SETS TO VECTOR OPTIMIZATION PROBLEMS
    Anh L.Q.
    Anh N.T.
    Duoc P.T.
    van Khanh L.T.
    Thu P.T.A.
    Applied Set-Valued Analysis and Optimization, 2023, 5 (01): : 121 - 135
  • [25] Quasiconcavity of sets and connectedness of the efficient frontier in ordered vector spaces
    Molho, E
    Zaffaroni, A
    GENERALIZED CONVEXITY, GENERALIZED MONOTONICITY: RECENT RESULTS, 1998, 27 : 407 - 424
  • [26] Contractibility of boundaries of cocompact convex sets and embeddings of limit sets
    Bregman, Corey
    Incerti-Medici, Merlin
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2024, 12 (01):
  • [27] CONTRACTIBILITY OF THE SOLUTION SETS FOR SET OPTIMIZATION PROBLEMS
    Chen, Bin
    Han, Yu
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (05): : 717 - 730
  • [28] Efficient Learning on Point Clouds with Basis Point Sets
    Prokudin, Sergey
    Lassner, Christoph
    Romero, Javier
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 4331 - 4340
  • [29] Efficient Learning on Point Clouds with Basis Point Sets
    Prokudin, Sergey
    Lassner, Christoph
    Romero, Javier
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3072 - 3081
  • [30] Connectedness of the sets of weak efficient solutions for generalized vector equilibrium problems
    Liu, Qing-You
    Long, Xian-Jun
    Huang, Nan-jing
    MATHEMATICA SLOVACA, 2012, 62 (01) : 123 - 136