A numerical study on the thermal transient model with moving laser heat source of AISI 304 stainless steel plate

被引:7
|
作者
Ninpetch, Patiparn [1 ]
Kowitwarangkul, Pruet [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Sirindhorn Int Thai German Grad Sch Engn TGGS, 1518 Pracharat 1 Rd, Bangsue Bangkok 10800, Thailand
关键词
Moving laser heat source; Numerical simulation; Thermal transient model; Gaussian distribution;
D O I
10.1016/j.matpr.2019.06.208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser beam is commonly used as a moving heat source in various metal processing such as cutting, heat treatment, welding, and recently in additive manufacturing or metal 3D-printing. Understanding of thermal behavior resulting from a moving laser beam are essential to control the product quality in those processes. This research aims to study the 3D thermal transient model of moving laser heat source with changeable direction of motion in order to investigate the effect of process parameters, e.g., power intensity, scanning speed and hatch spacing on the temperature distribution of the AISI 304 stainless steel plate. The numerical study is carried out using the commercial software ANSYS 18.1 and considering the simulation of the low intensity laser heat flux with Gaussian intensity distribution. The results of temperature profile at the probe point from numerical simulation are in agreement with the experiment results. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1761 / 1767
页数:7
相关论文
共 50 条
  • [41] Laser bending of AISI 304 steel sheets: Thermal stress analysis
    Yilbas, B. S.
    Arif, A. F. M.
    Aleem, B. J. Abdul
    OPTICS AND LASER TECHNOLOGY, 2012, 44 (02): : 303 - 309
  • [42] Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet
    Wang, Renping
    Lei, Yongping
    Shi, Yaowu
    OPTICS AND LASER TECHNOLOGY, 2011, 43 (04): : 870 - 873
  • [43] Erosive Wear Study of the AISI 201LN Stainless Steel: A Comparison with the AISI 304 and AISI 410 Stainless Steels
    Marques de Oliveira, Ana Paula
    Houmard, Manuel
    Labiapari, Wilian da Silva
    Godoy, Cristina
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2019, 50A (04): : 1663 - 1671
  • [44] Experimental analysis and numerical simulation of the stainless AISI 304 steel friction drilling process
    Krasauskas, P.
    Kilikevicius, S.
    Cesnavicius, R.
    Pacenga, D.
    MECHANIKA, 2014, (06): : 590 - 595
  • [45] Numerical Simulation of Nugget Growth for Resistance Spot Welding in Stainless Steel AISI 304
    de Andrade Molenda, Carlos Henrique
    Fontana de Paris, Aleir Antonio
    Limberger, Inacio da Fontoura
    da Silva, Rogerio Brittes
    de Oliveira, Leandro Mann
    Righi, Luiz Antonio
    SOLDAGEM & INSPECAO, 2010, 15 (04): : 307 - 316
  • [46] Reducing the degree of sensitization of AISI 304 stainless steel with ceramics heat insulating paste
    Qiu, JH
    ANTI-CORROSION METHODS AND MATERIALS, 1997, 44 (01) : 10 - &
  • [47] A statistical model for recrystallization and grain growth: Application to the AISI 304 stainless steel
    Di Schino, A
    Abbruzzese, G
    RECRYSTALLIZATION AND GRAIN GROWTH, VOLS 1 AND 2, 2001, : 1021 - 1026
  • [48] MATERIAL MODEL PARAMETER IDENTIFICATION OF STAINLESS STEEL (AISI 304L)
    Jindra, D.
    Kala, Z.
    Seitl, S.
    Kala, J.
    ENGINEERING MECHANICS 2020 (IM2020), 2020, : 246 - 249
  • [49] Niobized AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell
    Wang, Lixia
    Sun, Juncai
    Li, Pengbin
    Jing, Bo
    Li, Song
    Wen, Zhongsheng
    Ji, Shijun
    JOURNAL OF POWER SOURCES, 2012, 208 : 397 - 403