Assessing the performance of copaiba oil and allantoin nanoparticles on multidrug-resistant Candida parapsilosis

被引:9
|
作者
Svetlichny, G. [1 ]
Kulkamp-Guerreiro, I. C. [2 ,3 ]
Dalla Lana, D. F. [2 ]
Bianchin, M. D. [3 ]
Pohlmann, A. R. [4 ]
Fuentefria, A. M. [2 ,3 ]
Guterres, S. S. [1 ,2 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Quim, Programa Posgrad Ciencia Mat, Av Bento Goncalves 9500,Sala A 216, BR-91501970 Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Fac Farm, Programa Posgrad Ciencias Farmaceut, Av Ipiranga 2752, BR-90610000 Porto Alegre, RS, Brazil
[3] Univ Fed Rio Grande do Sul, Inst Ciencias Basicas Saude, Programa Posgrad Farmacol & Terapeut, Fac Farm, Rua Sarmento Leite 500,Sala 305, BR-90050170 Porto Alegre, RS, Brazil
[4] Univ Fed Rio Grande do Sul, Inst Quim, Dept Quim Organ, Av Bento Goncalves 9500, BR-91501970 Porto Alegre, RS, Brazil
关键词
Solid lipid nanoparticles; Antifungal activity; Multidrug-resistant yeast; Copaiba oil; Allantoin; Candida parapsilosis; ANTIFUNGAL ACTIVITY; COPAIFERA SP; INVASIVE CANDIDIASIS; AMPHOTERICIN-B; OLEORESIN; DERMATOPHYTES; MECHANISMS; EFFICACY; DIPTERA;
D O I
10.1016/j.jddst.2017.05.020
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
This study investigated the chemical and morphological structure of solid lipid nanoparticles made from copaiba oil. Moreover, the influence of allantoin in the formulations was investigated, as was the mechanism of action of the nanoparticles against multidrug-resistant Candida parapsilosis. Formulations were prepared via high-pressure homogenisation. Photon correlation spectroscopy and laser diffraction showed nanoparticles with diameters below 150 nm, narrow size distribution and negative zeta potential values. The nanoparticles' antifungal activity was assessed using a sorbitol protection assay. The ergosterol content and the influence of sorbitol on the minimum inhibitory concentrations were determined. The nanoparticles displayed nonspecific action on fungal cells. The antifungal effect is related to a complex synergism of natural substances with deeper action on cell replication. Thermogravimetric analysis showed that the individual behaviour of each component was modified in the formulation. Transmission electron microscopy showed differences in morphology caused by the presence of allantoin. The smaller particles can penetrate deeply into fungal cells. These findings indicated that even without antifungal effects when used in isolation, the incorporation of allantoin modified the size distribution, zeta potential and morphological structure of copaiba oil nanoparticles, resulting in particles with greater antifungal effects against multidrug-resistant yeasts. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 50 条
  • [31] Phenotypic switching in newly emerged multidrug-resistant pathogen Candida auris
    Bentz, Meghan L.
    Sexton, D. Joseph
    Welsh, Rory M.
    Litvintseva, Anastasia P.
    MEDICAL MYCOLOGY, 2019, 57 (05) : 636 - 638
  • [32] The importance of rapid diagnosis for multidrug-resistant Candida: an interview with Maurizio Sanguinetti
    Sanguinetti, Maurizio
    FUTURE MICROBIOLOGY, 2019, 14 (12) : 1011 - 1012
  • [33] Are we ready for the global emergence of multidrug-resistant Candida auris in Taiwan?
    Lu, Po-Liang
    Liu, Wei-Lun
    Lo, Hsiu-Jung
    Wang, Fu-Der
    Ko, Wen-Chien
    Hsueh, Po-Ren
    Ho, Mao-Wang
    Liu, Chun-Eng
    Chen, Yen-Hsu
    Chen, Yee-Chun
    Chuang, Yin-Ching
    Chang, Shan-Chwen
    JOURNAL OF THE FORMOSAN MEDICAL ASSOCIATION, 2018, 117 (06) : 462 - 470
  • [34] Challenges in the diagnosis and treatment of candidemia due to multidrug-resistant Candida auris
    Giacobbe, Daniele Roberto
    Mikulska, Malgorzata
    Vena, Antonio
    Di Pilato, Vincenzo
    Magnasco, Laura
    Marchese, Anna
    Bassetti, Matteo
    FRONTIERS IN FUNGAL BIOLOGY, 2023, 4
  • [35] Candida vulturna Outbreak Caused by Cluster of Multidrug-Resistant Strains, China
    Du, Han
    Bing, Jian
    Xu, Xiaohong
    Zheng, Qiushi
    Hu, Tianren
    Hao, Yajuan
    Li, Shuping
    Nobile, Clarissa J.
    Zhan, Ping
    Huang, Guanghua
    EMERGING INFECTIOUS DISEASES, 2023, 29 (07) : 1425 - 1428
  • [36] In Vitro Interactions of Echinocandins with Triazoles against Multidrug-Resistant Candida auris
    Fakhim, Hamed
    Chowdhary, Anuradha
    Prakash, Anupam
    Vaezi, Afsane
    Dannaoui, Eric
    Meis, Jacques F.
    Badali, Hamid
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2017, 61 (11)
  • [37] A proteomic approach to understanding the development of multidrug-resistant Candida albicans strains
    Kusch, H
    Biswas, K
    Schwanfelder, S
    Engelmann, S
    Rogers, PD
    Hecker, M
    Morschhäuser, J
    MOLECULAR GENETICS AND GENOMICS, 2004, 271 (05) : 554 - 565
  • [38] Comprehensive Overview of Candida auris: An Emerging Multidrug-Resistant Fungal Pathogen
    Kim, Ji-Seok
    Cha, Hyunjin
    Bahn, Yong-Sun
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2024, 34 (07) : 1365 - 1375
  • [39] Multidrug-Resistant Candida auris and its Role in Carcinogenesis: A Scoping Review
    Kamil, Wan NurHazirah W. A. N. A. H. M. A. D.
    Zainal, Mukarramah
    Bandara, H. M. H. N.
    Arzmi, Mohd Hafiz
    MALAYSIAN JOURNAL OF MEDICAL SCIENCES, 2025, 32 (01): : 6 - 15
  • [40] Small molecules for combating multidrug-resistant superbug Candida auris infections
    Jie Tu
    Na Liu
    Yahui Huang
    Wanzhen Yang
    Chunquan Sheng
    Acta Pharmaceutica Sinica B, 2022, 12 (11) : 4056 - 4074