On Ramanujan's function k(q)=r(q)r 2(q 2)

被引:21
|
作者
Cooper, Shaun [1 ]
机构
[1] Massey Univ Albany, IIMS, N Shore Mail Ctr, Auckland, New Zealand
来源
RAMANUJAN JOURNAL | 2009年 / 20卷 / 03期
关键词
Atkin-Lehner involution; Eisenstein series; Eta-function; Ramanujan's lost notebook; Ramanujan's second notebook; Rogers-Ramanujan continued fraction; Theta function; INFINITE PRODUCT IDENTITIES; CONTINUED-FRACTION; MODULAR EQUATIONS; SERIES; FORMULAS;
D O I
10.1007/s11139-009-9198-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In both his second and lost notebooks, Ramanujan introduced a function, related to the Rogers-Ramanujan continued fraction and its quadratic transformation, and listed several of its properties. We extend these results and develop a systematic theory.
引用
收藏
页码:311 / 328
页数:18
相关论文
共 50 条
  • [41] On the complexity of generalized Q2R automaton
    Goles, Eric
    Montalva-Medel, Marco
    Montealegre, Pedro
    Rios-Wilson, Martin
    ADVANCES IN APPLIED MATHEMATICS, 2022, 138
  • [42] GABOR ANALYSIS OF THE SPACES M(p,q,w)(R~d) AND S(p,q,r,w,ω)(R~d)
    Ayse Sandιkι
    A.Turan Grkanlι
    ActaMathematicaScientia, 2011, 31 (01) : 141 - 158
  • [43] Lower bounds for multicolor classical Ramsey numbers R(q,q,•••,q)
    Su, WL
    Luo, HP
    Li, Q
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (10): : 1019 - 1024
  • [44] Neutron stars in Palatini R plus αR2 and R plus αR2 + βQ theories
    Herzog, Georg
    Sanchis-Alepuz, Helios
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (10):
  • [45] Evaluations of the Rogers-Ramanujan continued fraction R(q) by modular equations
    Yi, JH
    ACTA ARITHMETICA, 2001, 97 (02) : 103 - 127
  • [46] Extremal values for the sum Σr=1τ e(a2r/q)
    Kaczorowski, J.
    Molteni, G.
    JOURNAL OF NUMBER THEORY, 2012, 132 (11) : 2595 - 2603
  • [47] A characterization of the identity function with equation f(p+q+r)=f(p)+f(q)+f(r)
    Jin-Hui Fang
    Combinatorica, 2011, 31 : 697 - 701
  • [48] Weyl’s theorem for algebraically wF(p, r, q) operators with p, r > 0 and q ≥ 1
    M. H. M. Rashid
    Ukrainian Mathematical Journal, 2012, 63 : 1256 - 1267
  • [49] On (q2 + q + 2, q + 2)-arcs in the Projective Plane PG(2, q)
    Simeon Ball
    Ray Hill
    Ivan Landjev
    Harold Ward
    Designs, Codes and Cryptography, 2001, 24 : 205 - 224
  • [50] Monomial bases for little q-Schur algebras s(2,r)
    Fu, Q
    ALGEBRA COLLOQUIUM, 2005, 12 (03) : 413 - 430