On the approximate solution to an initial boundary valued problem for the Cahn-Hilliard equation

被引:3
|
作者
Rebelo, Paulo [1 ]
机构
[1] Univ Beira Interior, Dept Matemat, P-6201001 Covilha, Portugal
关键词
Adomian polynomials; Fourier Method; Cahn-Hilliard equation; Pattern formation; Initial homogeneous boundary valued problem; DIFFERENTIAL-EQUATIONS; SYSTEM;
D O I
10.1016/j.cnsns.2009.03.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The particular approximate solution of the initial boundary valued problem to the Cahn-Hilliard equation is provided. The Fourier Method is combined with the Adomian's decomposition method in order to provide an approximate solution that satisfy the initial and the boundary conditions. The approximate solution also satisfies the mass conservation principle. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 50 条
  • [41] SPECIAL CASE OF THE CAHN-HILLIARD EQUATION
    Frolovskaya, O. A.
    Admaev, O. V.
    Pukhnachev, V. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 324 - 334
  • [42] A new formulation of the Cahn-Hilliard equation
    Miranville, A
    Piétrus, A
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (02) : 285 - 307
  • [43] Pulled fronts in the Cahn-Hilliard equation
    Malomed, BA
    Frantzeskakis, DJ
    Nistazakis, HE
    Yannacopoulos, AN
    Kevrekidis, PG
    PHYSICS LETTERS A, 2002, 295 (5-6) : 267 - 272
  • [44] A Cahn-Hilliard equation with singular diffusion
    Schimperna, Giulio
    Pawlow, Irena
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 779 - 803
  • [45] Stationary solutions for the Cahn-Hilliard equation
    Wei, JC
    Winter, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04): : 459 - 492
  • [46] Convergence of solutions to Cahn-Hilliard equation
    Rybka, P
    Hoffmann, KH
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) : 1055 - 1077
  • [47] A nonlocal stochastic Cahn-Hilliard equation
    Cornalba, Federico
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 140 : 38 - 60
  • [48] Local Dynamics of Cahn-Hilliard Equation
    Kashchenko, S. A.
    Plyshevskaya, S. P.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2019, 22 (01): : 93 - 97
  • [49] NONLINEAR ASPECTS OF THE CAHN-HILLIARD EQUATION
    NOVICKCOHEN, A
    SEGEL, LA
    PHYSICA D, 1984, 10 (03): : 277 - 298
  • [50] SPINODAL DECOMPOSITION FOR THE CAHN-HILLIARD EQUATION
    GRANT, CP
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (3-4) : 453 - 490