Multishelled NixCo3-xO4 Hollow Microspheres Derived from Bimetal Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries

被引:116
|
作者
Wu, Lan-Lan [1 ,2 ]
Wang, Zhuo [1 ]
Long, Yan [1 ,2 ]
Li, Jian [1 ,2 ]
Liu, Yu [1 ,2 ]
Wang, Qi-Shun [1 ,2 ]
Wang, Xiao [1 ]
Song, Shu-Yan [1 ]
Liu, Xiaogang [3 ]
Zhang, Hong-Jie [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, 5625 Renmin St, Changchun 130022, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Natl Univ Singapore, Dept Chem, Sci Dr 3, Singapore 117543, Singapore
基金
中国国家自然科学基金;
关键词
ENHANCED ELECTROCHEMICAL PERFORMANCE; TRANSITION-METAL OXIDE; ACCURATE CONTROL; HIGH-CAPACITY; STORAGE; NANOSTRUCTURES; TEMPLATE; NANOTUBES; POLYHEDRA; SPHERES;
D O I
10.1002/smll.201604270
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal organic frameworks (MOFs) featuring versatile topological architectures are considered to be efficient self-sacrificial templates to achieve mesoporous nanostructured materials. A facile and cost-efficient strategy is developed to scalably fabricate binary metal oxides with complex hollow interior structures and tunable compositions. Bimetal organic frameworks of Ni-Co-BTC solid microspheres with diverse Ni/Co ratios are readily prepared by solvothermal method to induce the Ni2Co3-xO4 multishelled hollow microspheres through a morphology-inherited annealing treatment. The obtained mixed metal oxides are demonstrated to be composed of nanometer-sized subunits in the shells and large void spaces left between adjacent shells. When evaluated as anode materials for lithium-ion batteries, Ni2Co3-xO4-0.1 multishelled hollow microspheres deliver a high reversible capacity of 1109.8 mAh g(-1) after 100 cycles at a current density of 100 mA g(-1) with an excellent high-rate capability. Appropriate capacities of 832 and 673 mAh g(-1) could also be retained after 300 cycles at large currents of 1 and 2 A g(-1), respectively. These prominent electrochemical properties raise a concept of synthesizing MOFs-derived mixed metal oxides with multishelled hollow structures for progressive lithium-ion batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Controlled synthesis of series NixCo3-xO4 products: Morphological evolution towards quasi-single-crystal structure for high-performance and stable lithium-ion batteries
    Yu Zhou
    Yong Liu
    Wenxia Zhao
    Hai Wang
    Baojun Li
    Xiang Zhou
    Hui Shen
    Scientific Reports, 5
  • [22] Controlled synthesis of series NixCo3-xO4 products: Morphological evolution towards quasi-single-crystal structure for high-performance and stable lithium-ion batteries
    Zhou, Yu
    Liu, Yong
    Zhao, Wenxia
    Wang, Hai
    Li, Baojun
    Zhou, Xiang
    Shen, Hui
    SCIENTIFIC REPORTS, 2015, 5
  • [23] Carbon-Coated Fe3O4/VOX Hollow Microboxes Derived from Metal-Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries
    Zhao, Zhi-Wei
    Wen, Tao
    Liang, Kuang
    Jiang, Yi-Fan
    Zhou, Xiao
    Shen, Cong-Cong
    Xu, An-Wu
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) : 3757 - 3765
  • [24] Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium-ion batteries
    Song, Yonghai
    Chen, Yaqin
    Wu, Jiafeng
    Fu, Yuanyuan
    Zhou, Rihui
    Chen, Shouhui
    Wang, Li
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 694 : 1246 - 1253
  • [25] Metal–organic framework derived porous nanostructured Co3O4 as high-performance anode materials for lithium-ion batteries
    Yan-Hua Lu
    Jin-Hui Li
    Zhi-Feng Xu
    Jia-Ming Liu
    Sui-Jun Liu
    Rui-Xiang Wang
    Journal of Materials Science, 2021, 56 : 2451 - 2463
  • [26] Facile synthesis of hierarchical ZnFe2O4 hollow microspheres as high-performance anode for lithium-ion batteries
    Hongwei Yue
    Shujun Chen
    WeiWei Tie
    Lijun Wu
    Wenhe Xie
    Tingting Li
    Wei Li
    Hao Li
    Ionics, 2021, 27 : 2835 - 2845
  • [27] Facile synthesis of hierarchical ZnFe2O4 hollow microspheres as high-performance anode for lithium-ion batteries
    Yue, Hongwei
    Chen, Shujun
    Tie, WeiWei
    Wu, Lijun
    Xie, Wenhe
    Li, Tingting
    Li, Wei
    Li, Hao
    IONICS, 2021, 27 (07) : 2835 - 2845
  • [28] Synthesis of Hollow Carbon Microspheres with Tunable Shell Numbers for High-Performance Anode Material in Lithium-Ion Batteries
    Zeng, Guilin
    Zhou, Wei
    Zheng, Jialing
    Fan, Zhanhua
    Chen, Han
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (08) : 4899 - 4906
  • [29] Phthalocyanine-based covalent organic frameworks as novel anode materials for high-performance lithium-ion/sodium-ion batteries
    Zhao, Jianjun
    Zhou, Miaomiao
    Chen, Jun
    Tao, Lihong
    Zhang, Qian
    Li, Zhifeng
    Zhong, Shengwen
    Fu, Haikuo
    Wang, Hua
    Wu, Lijue
    CHEMICAL ENGINEERING JOURNAL, 2021, 425
  • [30] Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries
    Haoliang Xue
    Qingze Jiao
    Jinyu Du
    Shanshan Wang
    Caihong Feng
    Qin Wu
    Hansheng Li
    Qinliang Lu
    Daxin Shi
    Yun Zhao
    Ionics, 2019, 25 : 4659 - 4666