New approaches to the diagnosis of gastric cancer by mass spectrometry and machine learning.

被引:0
|
作者
Nakayama, Takashi [1 ]
Saito, Ryo [2 ]
Takahashi, Kazunori [1 ]
Yamamoto, Atsushi [2 ]
Takiguchi, Koichi [2 ]
Maruyama, Suguru [2 ]
Ashizawa, Naoki [2 ]
Shoda, Katsutoshi [2 ]
Nakayama, Yuko [2 ]
Furuya, Shinji [2 ]
Takeda, Sen
Ichikawa, Daisuke [2 ]
机构
[1] Univ Yamanashi, Dept Surg 1, Med, Kofu, Yamanashi, Japan
[2] Univ Yamanashi, Dept Surg 1, Kofu, Yamanashi, Japan
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PJ15-5-1
引用
收藏
页码:880 / 880
页数:1
相关论文
共 50 条
  • [21] Predicting metastasis in gastric cancer patients: machine learning-based approaches
    Talebi, Atefeh
    Celis-Morales, Carlos A.
    Borumandnia, Nasrin
    Abbasi, Somayeh
    Pourhoseingholi, Mohamad Amin
    Akbari, Abolfazl
    Yousefi, Javad
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] Predicting metastasis in gastric cancer patients: machine learning-based approaches
    Atefeh Talebi
    Carlos A. Celis-Morales
    Nasrin Borumandnia
    Somayeh Abbasi
    Mohamad Amin Pourhoseingholi
    Abolfazl Akbari
    Javad Yousefi
    Scientific Reports, 13
  • [23] Predicting Breast Cancer by Paper Spray Ion Mobility Spectrometry Mass Spectrometry and Machine Learning
    Huang, Ying-Chen
    Chung, Hsin-Hsiang
    Dutkiewicz, Ewelina P.
    Chen, Chih-Lin
    Hsieh, Hua-Yi
    Chen, Bo-Rong
    Wang, Ming-Yang
    Hsu, Cheng-Chih
    ANALYTICAL CHEMISTRY, 2020, 92 (02) : 1653 - 1657
  • [24] Predictors of venous thromboembolism in cancer patients using machine learning.
    Daylan, Ayse Ece Cali
    Khemasuwan, Danai
    Kim, Hyun S.
    Geetha, Parvathy
    Velasco, Sylvia Vania Alarcon
    Lathan, Christopher S.
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [25] Exploratory data analysis (EDA) machine learning approaches for ocean world analog mass spectrometry
    Da Poian, Victoria
    Theiling, Bethany
    Clough, Lily
    McKinney, Brett
    Major, Jonathan
    Chen, Jingyi
    Hoerst, Sarah
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2023, 10
  • [26] Improved classification of mass spectrometry database search results using newer machine learning approaches
    Ulintz, PJ
    Zhu, J
    Qin, ZHS
    Andrews, PC
    MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (03) : 497 - 509
  • [27] Recent Developments in Machine Learning for Mass Spectrometry
    Beck, Armen G.
    Muhoberac, Matthew
    Randolph, Caitlin E.
    Beveridge, Connor H.
    Wijewardhane, Prageeth R.
    Kentta''maa, Hilkka I.
    Chopra, Gaurav
    ACS MEASUREMENT SCIENCE AU, 2024, 4 (03): : 233 - 246
  • [28] Evaluation of mass spectrometry based approaches for the diagnosis of haemoglobinopathies
    Nicolle, C. S.
    Jackson, N.
    Radi, K.
    Newbold, J.
    Vafadar-Isfahani, B.
    Smith, J.
    Scrivens, J.
    BRITISH JOURNAL OF HAEMATOLOGY, 2014, 165 : 90 - 90
  • [29] Evaluation Of Mass Spectrometry Based Approaches For The Diagnosis Of Hemoglobinopathies
    Nicolle, Sarah
    Jackson, Nicholas
    Radi, Krisztina
    Newbold, Jane
    Vafadar-Isfahani, Baharak
    Smith, Julia
    Scrivens, James
    BLOOD, 2013, 122 (21)
  • [30] Applications of different machine learning approaches in prediction of breast cancer diagnosis delay
    Dehdar, Samira
    Salimifard, Khodakaram
    Mohammadi, Reza
    Marzban, Maryam
    Saadatmand, Sara
    Fararouei, Mohammad
    Dianati-Nasab, Mostafa
    FRONTIERS IN ONCOLOGY, 2023, 13