sample size;
misclassification;
Bayesian point of view;
average coverage;
D O I:
10.1016/j.amc.2005.12.071
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The problem of obtaining a flexible and easy to implement algorithm in order to derive the optimal sample size when the data are subject to misclassification is critical to practitioners. The topic is addressed from the Bayesian point of view where a special structure of the a priori parameter information is investigated. The proposed methodology is applied in specific examples. (c) 2006 Elsevier Inc. All rights reserved.
机构:
Univ Lancaster, Fylde Coll, Dept Math & Stat, MPS Res Unit, Lancaster LA1 4YE, EnglandUniv Lancaster, Fylde Coll, Dept Math & Stat, MPS Res Unit, Lancaster LA1 4YE, England
Whitehead, John
Valdes-Marquez, Elsa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Reading, Sect Quantitat Biol & Appl Stat, Reading, Berks, EnglandUniv Lancaster, Fylde Coll, Dept Math & Stat, MPS Res Unit, Lancaster LA1 4YE, England
Valdes-Marquez, Elsa
Johnson, Patrick
论文数: 0引用数: 0
h-index: 0
机构:
Pfizer Global Res & Dev, Sandwich, Kent, EnglandUniv Lancaster, Fylde Coll, Dept Math & Stat, MPS Res Unit, Lancaster LA1 4YE, England
Johnson, Patrick
Graham, Gordon
论文数: 0引用数: 0
h-index: 0
机构:
Pfizer Global Res & Dev, Sandwich, Kent, EnglandUniv Lancaster, Fylde Coll, Dept Math & Stat, MPS Res Unit, Lancaster LA1 4YE, England
机构:
Univ Calif Los Angeles, Ctr Community Hlth, Los Angeles, CA 90024 USAUniv Calif Los Angeles, Ctr Community Hlth, Los Angeles, CA 90024 USA
Comulada, W. Scott
Weiss, Robert E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Ctr Community Hlth, Los Angeles, CA 90024 USA