Homology class of a Lagrangian Klein bottle

被引:5
|
作者
Nemirovski, S. Yu. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow, Russia
关键词
Lagrangian embedding; totally real embedding; Luttinger surgery; MANIFOLDS;
D O I
10.1070/IM2009v073n04ABEH002462
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that an embedded Lagrangian Klein bottle realises a, non-zero mod 2 homology class in a compact symplectic four-manifold (X,omega) such that c(1)(X,omega).[omega] > 0.
引用
收藏
页码:689 / 698
页数:10
相关论文
共 50 条
  • [31] On the number of Klein bottle types
    Sequin, Carlo H.
    JOURNAL OF MATHEMATICS AND THE ARTS, 2013, 7 (02) : 51 - 63
  • [32] Uniform Maps on the Klein Bottle
    Wilson, Steve
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2006, 10 (02): : 161 - 171
  • [33] An algebraic study of the Klein Bottle
    Larry A. Lambe
    Journal of Homotopy and Related Structures, 2016, 11 : 885 - 891
  • [34] The Klein bottle of digital identity
    Kimberly Cass
    AI & SOCIETY, 2021, 36 : 1073 - 1074
  • [35] A Lagrangian Quantum Homology
    Biran, Paul
    Cornea, Octav
    NEW PERSPECTIVES AND CHALLENGES IN SYMPLECTIC FIELD THEORY, 2009, 49 : 1 - +
  • [36] The order of a meridian of a knotted Klein bottle
    Yoshikawa, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (12) : 3727 - 3731
  • [37] CONFORMAL GEOMETRIC INEQUALITIES ON THE KLEIN BOTTLE
    El Mir, Chady
    Yassine, Zeina
    CONFORMAL GEOMETRY AND DYNAMICS, 2015, 19 : 240 - 257
  • [38] On The Fundamental Group and Folding of Klein Bottle
    El-Ahmady, A. E.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 37 (07): : 56 - 64
  • [39] Visual cortex: Looking into a Klein bottle
    Swindale, NV
    CURRENT BIOLOGY, 1996, 6 (07) : 776 - 779
  • [40] Characteristic classes of Klein bottle bundles
    Hidber, Cristhian E.
    Xicotencatl, Miguel A.
    TOPOLOGY AND ITS APPLICATIONS, 2017, 220 : 1 - 13