We investigate spectral properties of Markov semigroups in von Neumann algebras and their dual semigroups in a fairly general setting which assumes only the abelianess of the semigroups and positivity of the maps in question. In particular, we analyse various properties of the spectral subspaces, and relations between the spectra of the Markov semigroup and its dual semigroup. In our analysis, we make extensive use of ergodic and quasi-ergodic projections which seems to be a new but quite fruitful approach. (C) 2017 Elsevier Inc. All rights reserved.
机构:
Kazan Volga Reg Fed Univ, Inst Computat Math & Informat Technol, Dept Math Stat, Kremlevskaya ul 18, Kazan 420008, RussiaKazan Volga Reg Fed Univ, Inst Computat Math & Informat Technol, Dept Math Stat, Kremlevskaya ul 18, Kazan 420008, Russia
机构:
Univ Autonoma Metropolitana Iztapalapa, Iztapalapa Campus Ave San Rafael Atlixco 186, Mexico City 09340, DF, MexicoUniv Autonoma Metropolitana Iztapalapa, Iztapalapa Campus Ave San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
Bolanos-Servin, Jorge R.
Carbone, Raffaella
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pavia, Dipartimento Matemat, I-27100 Pavia, ItalyUniv Autonoma Metropolitana Iztapalapa, Iztapalapa Campus Ave San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
Carbone, Raffaella
OPEN SYSTEMS & INFORMATION DYNAMICS,
2014,
21
(04):