Error estimates for Galerkin finite element methods for the Camassa-Holm equation

被引:9
|
作者
Antonopoulos, D. C. [1 ,2 ]
Dougalis, V. A. [1 ,2 ]
Mitsotakis, D. E. [3 ]
机构
[1] Univ Athens, Math Dept, Zografos 15784, Greece
[2] FORTH, Inst Appl & Computat Math, Iraklion 70013, Greece
[3] Victoria Univ Wellington, Sch Math & Stat, Wellington 6140, New Zealand
关键词
TRAVELING-WAVE SOLUTIONS; KORTEWEG-DE-VRIES; DIFFERENCE SCHEME; NUMERICAL SCHEMES; WELL-POSEDNESS; CONVERGENCE; STABILITY; MODEL;
D O I
10.1007/s00211-019-01045-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Camassa-Holm (CH) equation, a nonlinear dispersive wave equation that models one-way propagation of long waves of moderately small amplitude. We discretize in space the periodic initial-value problem for CH (written in its original and in system form), using the standard Galerkin finite element method with smooth splines on a uniform mesh, and prove optimal-order L2-error estimates for the semidiscrete approximation. Using the fourth-order accurate, explicit, classical Runge-Kutta scheme for time-stepping, we construct a highly accurate, stable, fully discrete scheme that we employ in numerical experiments to approximate solutions of CH, mainly smooth travelling waves and nonsmooth solitons of the peakon' type.
引用
收藏
页码:833 / 862
页数:30
相关论文
共 50 条
  • [31] A Note on the Generalized Camassa-Holm Equation
    Wu, Yun
    Zhao, Ping
    [J]. JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [32] Decomposition method for the Camassa-Holm equation
    Kamdem, J. Sadefo
    Qiao, Zhijun
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 31 (02) : 437 - 447
  • [33] A generalized super Camassa-Holm equation
    Li, Nianhua
    Tian, Kai
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2024, 199
  • [34] On the isospectral problem of the Camassa-Holm equation
    Dou, Yaru
    Han, Jieyu
    Meng, Gang
    [J]. ARCHIV DER MATHEMATIK, 2023, 121 (01) : 67 - 76
  • [35] On a dissipative form of Camassa-Holm equation
    Yu, Shengqi
    Wang, Mingxin
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [36] Attractors for the viscous Camassa-Holm equation
    Stanislavova, Milena
    Stefanov, Atanas
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 18 (01) : 159 - 186
  • [37] Stability for the periodic Camassa-Holm equation
    Lenells, J
    [J]. MATHEMATICA SCANDINAVICA, 2005, 97 (02) : 188 - 200
  • [38] Backlund Transformations for the Camassa-Holm Equation
    Rasin, Alexander G.
    Schiff, Jeremy
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (01) : 45 - 69
  • [39] Differential invariants of Camassa-Holm equation
    Li, Wei
    Su, Zhong-Yu
    Wang, Fei
    Li, Wen-Ting
    [J]. CHINESE JOURNAL OF PHYSICS, 2019, 59 : 153 - 159
  • [40] On the Cauchy problem of the Camassa-Holm equation
    Dai H.-H.
    Kwek K.-H.
    Gao H.-J.
    Qu C.-C.
    [J]. Frontiers of Mathematics in China, 2006, 1 (1) : 144 - 159