A combinatorial construction of a graph with automorphism group SO+(2n,2)

被引:0
|
作者
Cooperstein, BN [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词
near; 2n-gon; bipartite dual polar space; orthogonal group;
D O I
10.1016/S0012-365X(99)00365-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A simple combinatorial construction is given which takes as its imput a regular graph of valency k such that the convex closure of two points at distance two is the complete bipartite graph K-3,K-3 and whose output is a regular graph of valency 2k + 1. It is shown that the sequence of graphs obtained by starting with the graph with one point and no edges and applying the construction recursively is the family of bipartite dual polar space of type DSO+(2n,2). (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 50 条
  • [1] A note on the Samelson products in π*(SO(2n)) and the group [SO(2n), SO(2n)]
    Hamanaka, Hiroaki
    Kono, Akira
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (03) : 567 - 572
  • [2] On parameters for the group SO(2n)
    Arthur, James
    AUTOMORPHIC FORMS AND RELATED GEOMETRY: ASSESSING THE LEGACY OF I.I. PIATETSKI-SHAPIRO, 2014, 614 : 1 - 29
  • [3] AN AUTOMORPHISM OF SYMPLECTIC GROUP SP4(2N)
    DUNCAN, A
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 64 : 5 - &
  • [4] Hecke theory for SO+(2, n+2)
    Krieg, Aloys
    Roemer, Hannah
    Schaps, Felix
    JOURNAL OF NUMBER THEORY, 2024, 262 : 454 - 470
  • [5] MAXIMAL DISCRETE SUBGROUPS OF SO+(2, n+2)
    Krieg, Aloys
    Schaps, Felix
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (06) : 2357 - 2365
  • [6] A HOMOTOPY GROUP OF THE SYMMETRIC SPACE SO(2N)/U(N)
    OSHIMA, H
    OSAKA JOURNAL OF MATHEMATICS, 1984, 21 (03) : 473 - 475
  • [7] A construction of the automorphism groups of indecomposable S-rings over Z(2n)
    Kovacs, Istvan
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2011, 52 (01): : 83 - 103
  • [8] Automorphism group of 2-token graph of the Hamming graph
    Zhang, Ju
    Zhou, Jin-Xin
    Lee, Jaeun
    Li, Yan-Tao
    Xie, Jin-Hua
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [9] The KO-cohomology ring of SU(2n)/SO(2n)
    Watanabe, T
    GLASGOW MATHEMATICAL JOURNAL, 1997, 39 : 91 - 97
  • [10] THE CHERN CHARACTER OF THE SYMMETRICAL SPACE SU(2N)/SO(2N)
    WATANABE, T
    OSAKA JOURNAL OF MATHEMATICS, 1994, 31 (04) : 923 - 938