MAXIMAL DISCRETE SUBGROUPS OF SO+(2, n+2)

被引:2
|
作者
Krieg, Aloys [1 ]
Schaps, Felix [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math A, D-52056 Aachen, Germany
关键词
Special orthogonal group; discriminant kernel; normalizer; maximal discrete group; maximal even lattice; FORMS; EXTENSION; ALGEBRAS;
D O I
10.1090/proc/15889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the maximal discrete subgroups of SO+(2, n+ 2), which contain the discriminant kernel of an even lattice with two hyperbolic planes over Z. They coincide with the normalizers in SO+(2, n + 2) and are given by the group of all integral matrices inside SO+(2, n+ 2), whenever the underlying lattice is maximal even. Finally we deal with the irreducible root lattices as examples.
引用
收藏
页码:2357 / 2365
页数:9
相关论文
共 50 条
  • [1] Hecke theory for SO+(2, n+2)
    Krieg, Aloys
    Roemer, Hannah
    Schaps, Felix
    JOURNAL OF NUMBER THEORY, 2024, 262 : 454 - 470
  • [2] THE SELBERG TRACE FORMULA AND SELBERG ZETA-FUNCTION FOR COCOMPACT DISCRETE-SUBGROUPS OF SO+(1,N)
    PARNOVSKII, LB
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1992, 26 (03) : 196 - 203
  • [3] A combinatorial construction of a graph with automorphism group SO+(2n,2)
    Cooperstein, BN
    DISCRETE MATHEMATICS, 2000, 219 (1-3) : 27 - 35
  • [4] SPECTRA OF DERHAM-HODGE OPERATOR ON SO(N+2)/SO(2)XSO(N)
    STHANUMOORTHY, N
    BULLETIN DES SCIENCES MATHEMATIQUES, 1984, 108 (03): : 297 - 320
  • [5] ISOTROPY SUBGROUPS OF TORUS TN-ACTIONS ON (N+2)-MANIFOLDS
    KIM, SK
    PAK, J
    MICHIGAN MATHEMATICAL JOURNAL, 1974, 20 (04) : 353 - 359
  • [6] Connected subgroups of SO(2, n) acting irreducibly on ℝ2,n
    Antonio J. Di Scala
    Thomas Leistner
    Israel Journal of Mathematics, 2011, 182
  • [7] Formation of SO, SO+, and S2 by radiative association
    Andreazza, CM
    Marinho, EP
    ASTROPHYSICAL JOURNAL, 2005, 624 (02): : 1121 - 1125
  • [8] MAXIMAL-SUBGROUPS OF G2(2N)
    COOPERSTEIN, BN
    JOURNAL OF ALGEBRA, 1981, 70 (01) : 23 - 36
  • [9] N+2 LASER
    ISHCHENKO, VN
    LISITSIN, VN
    RAZHEV, AM
    STARINSKY, VN
    CHAPOVSKY, PL
    OPTICS COMMUNICATIONS, 1975, 13 (03) : 231 - 234
  • [10] SUBGROUPS WITH PROPERTY (P) AND MAXIMAL DISCRETE SUBGROUPS
    WANG, SP
    AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (02) : 404 - 414