SINGULAR INITIAL PROBLEM FOR FREDHOLM-VOLTERRA INTEGRODIFFERENTIAL EQUATIONS

被引:0
|
作者
Filippova, Olga [1 ]
Smarda, Zdenek [1 ]
机构
[1] Brno Univ Technol, Fac Elect Engn & Commun, Dept Math, Brno 61600, Czech Republic
关键词
Fredholm-Volterra integrodifferential equations; Banach fixed point theorem; DIFFERENTIAL-EQUATIONS; POSITIVE SOLUTIONS; SYSTEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper existence and uniqueness of solutions of singular Fredholm-Volterra integrodifferential equations are studied and, moreover, conditions of continuous dependence of solutions on a parameter are determined. Solutions of given integrodifferential equations are located in cone-shaped area, which gives a bound for solutions of the investigated singular problem.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [21] Modified HAM for solving linear system of Fredholm-Volterra Integral Equations
    Eshkuvatov, Z. K.
    Ismail, Sh
    Mamatova, H. X.
    Viscarra, D. S.
    Aloev, R. D.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 87 - 103
  • [22] A projection method for linear Fredholm-Volterra integro-differential equations
    Acar, Nese Isler
    Dascioglu, Aysegul
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 644 - 650
  • [23] Toward strictly singular fractional operator restricted by Fredholm-Volterra in Sobolev space
    Hasan, Shatha
    Sakkijha, Mona
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (43): : 416 - 427
  • [24] VARIOUS WAVELET METHODS FOR SOLVING FRACTIONAL FREDHOLM-VOLTERRA INTEGRAL EQUATIONS
    Shi, Peng-Peng
    Li, Xiu
    Li, Xing
    INTEGRAL EQUATIONS, BOUNDARY VALUE PROBLEMS AND RELATED PROBLEMS: DEDICATED TO PROFESSOR CHIEN-KE LU ON THE OCCASION OF HIS 90TH BIRTHDAY, 2013, : 275 - 285
  • [25] NUMERICAL-METHODS FOR SINGULAR VOLTERRA INTEGRODIFFERENTIAL EQUATIONS
    GAREY, LE
    UTILITAS MATHEMATICA, 1986, 29 : 201 - 208
  • [26] Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations
    Nguyen Duc Phuong
    Nguyen Anh Tuan
    Kumar, Devendra
    Nguyen Huy Tuan
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2021, 16
  • [27] A numerical method to solve fractional Fredholm-Volterra integro-differential equations
    Toma, Antonela
    Postavaru, Octavian
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 68 : 469 - 478
  • [28] ON A NONCOERCIVE PROBLEM FOR SINGULAR INTEGRODIFFERENTIAL EQUATIONS
    CHUNG, LK
    RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (04) : 186 - 187
  • [29] Ulam stabilities for nonlinear Volterra-Fredholm delay integrodifferential equations
    Kucche, Kishor D.
    Shikhare, Pallavi U.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2018, 9 (02): : 145 - 159
  • [30] ON A NONCOERCIVE PROBLEM FOR SINGULAR INTEGRODIFFERENTIAL EQUATIONS
    CHUNG, LK
    RUSSIAN MATHEMATICAL SURVEYS, 1989, 44 (05) : 206 - 207