The Schur multiplier and stem covers of Leibniz n-algebras

被引:1
|
作者
Manuel Casas, Jose [1 ]
Avelino Insua, Manuel [1 ]
Pacheco Rego, Natalia [2 ,3 ]
机构
[1] Univ Vigo, Dept Appl Math 1, EE Forestal, Pontevedra 36005, Spain
[2] Politech Inst Cavado, P-4750810 Vila Frescainha S Martin, Barcelos, Portugal
[3] Ave Campus IPCA, P-4750810 Vila Frescainha S Martin, Barcelos, Portugal
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2019年 / 95卷 / 3-4期
关键词
Leibniz n-algebra; Schur multiplier; stem cover; HOMOLOGY;
D O I
10.5486/PMD.2019.8573
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a free presentation 0 -> R -> F ->(rho )G -> 0 of a Leibniz n-algebra G, the quotient R boolean AND[F, ...,F-n]/[R,F, ...(n-1), F] is known as the Schur multiplier of G. In the article, we construct a four-term exact sequence relating the Schur multiplier of G and G/N, from which we derive some formulas concerning dimensions of the underlying vector spaces of the corresponding Schur multipliers. Additionally, this exact sequence is useful to characterize nilpotency of Leibniz n-algebras. Finally, we characterize stem covers of Leibniz n-algebras, showing their existence in case of finite dimension. We also analyze the interaction between stem covers of Leibniz n-algebras and the Schur multiplier.
引用
下载
收藏
页码:437 / 468
页数:32
相关论文
共 50 条
  • [21] HOMOLOGY AND CENTRAL EXTENSIONS OF LEIBNIZ AND LIE n-ALGEBRAS
    Manuel Casas, Jose
    Khmaladze, Emzar
    Ladra, Manuel
    Van der Linden, Tim
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2011, 13 (01) : 59 - 74
  • [22] Universal α-central extensions of Hom-Leibniz n-algebras
    Casas, J. M.
    Pacheco Rego, N.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (12): : 2468 - 2486
  • [23] The c-nilpotent Schur Lie-multiplier of Leibniz algebras
    Biyogmam, G. R.
    Casas, J. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 : 55 - 69
  • [24] Some radicals, Frattini and Cartan subalgebras of Leibniz n-algebras
    Gago, F.
    Ladra, M.
    Omirov, B. A.
    Turdibaev, R. M.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (11): : 1510 - 1527
  • [25] Poincare'-Birkhoff-Witt theorem for Leibniz n-algebras
    Casas, Jose Manuel
    Insua, Manuel A.
    Ladra, Manuel
    JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (11-12) : 1052 - 1065
  • [26] On the Schur Multiplier of n-Lie Algebras
    Darabi, Hamid
    Saeedi, Farshid
    JOURNAL OF LIE THEORY, 2017, 27 (01) : 271 - 281
  • [27] On the dimension of the c-nilpotent Schur Lie-multiplier of Leibniz algebras
    Biyogmam, Guy R.
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) : 1091 - 1098
  • [28] Some Theorems on Leibniz n-Algebras from the Category Un (Lb)
    Kim, Min Soo
    Turdibaev, Rustam
    ALGEBRA COLLOQUIUM, 2021, 28 (01) : 155 - 168
  • [29] Weyl n-Algebras
    Markarian, Nikita
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 350 (02) : 421 - 442
  • [30] On the dimension of the Schur multiplier of n-Lie algebras
    Akbarossadat, Seyedeh Nafiseh
    Saeedi, Farshid
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (07): : 1465 - 1499