The local Mobius equation and decomposition theorems in Riemannian geometry

被引:1
|
作者
Fernández-López, M
García-Río, E
Kupeli, DN
机构
[1] Univ Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
[2] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
关键词
submersion; Mobius equation; twisted product; warped product; product Riemannian manifolds;
D O I
10.4153/CMB-2002-040-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A partial differential equation, the local Mobius equation, is introduced in Riemannian geometry which completely characterizes the local twisted product structure of a Riemannian manifold. Also the characterizations of warped product and product structures of Riemannian manifolds are made by the local Mobius equation and an additional partial differential equation.
引用
收藏
页码:378 / 387
页数:10
相关论文
共 50 条
  • [1] GLOBAL THEOREMS IN RIEMANNIAN GEOMETRY
    ALLENDOERFER, CB
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (03): : 249 - 259
  • [2] Rigidity theorems in Riemannian geometry
    Croke, CB
    [J]. GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL, 2004, 137 : 47 - 72
  • [3] COMPARISON THEOREMS IN RIEMANNIAN GEOMETRY
    DEBIARD, A
    GAVEAU, B
    MAZET, E
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (12): : 455 - 458
  • [4] DECOMPOSITION THEOREMS OF RIEMANNIAN MANIFOLDS
    WANG, P
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 184 (OCT) : 327 - 341
  • [5] NEW COMPARISON THEOREMS IN RIEMANNIAN GEOMETRY
    Han, Yingbo
    Li, Ye
    Ren, Yibin
    Wei, Shihshu Walter
    [J]. BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (02): : 163 - 186
  • [6] SOME REGULARITY THEOREMS IN RIEMANNIAN GEOMETRY
    DETURCK, DM
    KAZDAN, JL
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1981, 14 (03): : 249 - 260
  • [7] Maximal ergodic theorems and applications to Riemannian geometry
    Sérgio Mendonça
    Detang Zhou
    [J]. Israel Journal of Mathematics, 2004, 139 : 319 - 335
  • [8] DIVERGENCE THEOREMS IN SEMI-RIEMANNIAN GEOMETRY
    UNAL, B
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 40 (02) : 173 - 178
  • [9] Maximal ergodic theorems and applications to Riemannian geometry
    Mendonça, S
    Zhou, DT
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2004, 139 (1) : 319 - 335
  • [10] Conformal Riemannian Maps between Riemannian Manifolds, Their Harmonicity and Decomposition Theorems
    Bayram Ṣahin
    [J]. Acta Applicandae Mathematicae, 2010, 109 : 829 - 847