Information cut for clustering using a gradient descent approach

被引:20
|
作者
Jenssen, Robert [1 ]
Erdogmus, Deniz
Hild, Kenneth E., II
Principe, Jose C.
Eltoft, Torbjorn
机构
[1] Univ Tromso, Dept Phys & Technol, N-9037 Tromso, Norway
[2] Oregon Grad Inst, OHSU, Beaverton, OR 97006 USA
[3] Univ Calif San Francisco, Biomagnet Image Lab, San Francisco, CA 94143 USA
[4] Univ Florida, Dept Elect & Comp Engn, Computat NeuroEngn Lab, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
graph theoretic cut; information theory; Parzen window density estimation; clustering; gradient descent optimization; annealing;
D O I
10.1016/j.patcog.2006.06.028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new graph cut for clustering which we call the Information Cut. It is derived using Parzen windowing to estimate an information theoretic distance measure between probability density functions. We propose to optimize the Information Cut using a gradient descent-based approach. Our algorithm has several advantages compared to many other graph-based methods in terms of determining an appropriate affinity measure, computational complexity, memory requirements and coping with different data scales. We show that our method may produce clustering and image segmentation results comparable or better than the state-of-the art graph-based methods. (c) 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:796 / 806
页数:11
相关论文
共 50 条
  • [41] A numerical approach to optimal coherent quantum LQG controller design using gradient descent
    Sichani, Arash Kh.
    Vladimirov, Igor G.
    Petersen, Ian R.
    [J]. AUTOMATICA, 2017, 85 : 314 - 326
  • [42] A Stochastic Gradient Descent Approach for Stochastic Optimal Control
    Archibald, Richard
    Bao, Feng
    Yong, Jiongmin
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 635 - 658
  • [43] MUTUAL-INFORMATION-PRIVATE ONLINE GRADIENT DESCENT ALGORITHM
    Zhang, Ruochi
    Venkitasubramaniam, Parv
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2077 - 2081
  • [44] Function Space Approach for Gradient Descent in Optimal Control
    Filo, Maurice
    Bamieh, Bassam
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 3447 - 3453
  • [45] ON STOCHASTIC GRADIENT DESCENT AND QUADRATIC MUTUAL INFORMATION FOR IMAGE REGISTRATION
    Singh, Abhishek
    Ahuja, Narendra
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 1326 - 1330
  • [46] Load Forecasting Using Elastic Gradient Descent
    Hong, Yuan
    Xia, Changhao
    Zhang, Shixiang
    Wu, Lin
    Yuan, Chao
    Huang, Ying
    Wang, Xuxu
    Zhu, Haifeng
    [J]. 2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 247 - 251
  • [47] Costing communication standards in information systems using a minimum cut approach
    Kimms, A
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2003, 54 (04) : 426 - 431
  • [48] Reparameterizing Mirror Descent as Gradient Descent
    Amid, Ehsan
    Warmuth, Manfred K.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [49] Hybrid Workflow Provisioning and Scheduling on Edge Cloud Computing Using a Gradient Descent Search Approach
    Alsurdeh, Raed
    Calheiros, Rodrigo N.
    Matawie, Kenan M.
    Javadi, Bahman
    [J]. 2020 19TH INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING (ISPDC 2020), 2020, : 68 - 75
  • [50] Spatial–Temporal Clustering and Optimization of Aircraft Descent and Approach Trajectories
    Zhao Yang
    Rong Tang
    Yixin Chen
    Bing Wang
    [J]. International Journal of Aeronautical and Space Sciences, 2021, 22 : 1512 - 1523