CancerNet: a database for decoding multilevel molecular interactions across diverse cancer types

被引:25
|
作者
Meng, X. [1 ]
Wang, J. [1 ,2 ]
Yuan, C. [1 ]
Li, X. [1 ,2 ]
Zhou, Y. [1 ]
Hofestaedt, R. [3 ]
Chen, M. [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Inst Bioinformat, James D Watson Inst Genome Sci, Hangzhou 310058, Zhejiang, Peoples R China
[3] Univ Bielefeld, Fac Technol, Dept Bioinformat & Med Informat, D-33615 Bielefeld, Germany
来源
ONCOGENESIS | 2015年 / 4卷
关键词
MICRORNA REGULATORY NETWORK; TARGET PREDICTION; SYSTEMS BIOLOGY; DOWN-REGULATION; EXPRESSION; MIR-1; IDENTIFICATION; CELLS; MIRNA; RESOURCE;
D O I
10.1038/oncsis.2015.40
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Protein-protein interactions (PPIs) and microRNA (miRNA)-target interactions are important for deciphering the mechanisms of tumorigenesis. However, current PPI databases do not support cancer-specific analysis. Also, no available databases can be used to retrieve cancer-associated miRNA-target interactions. As the pathogenesis of human cancers is affected by several miRNAs rather than a single miRNA, it is needed to uncover miRNA synergism in a systems level. Here for each cancer type, we constructed a miRNA-miRNA functionally synergistic network based on the functions of miRNA targets and their topological features in that cancer PPI network. And for the first time, we report the cancer-specific database CancerNet (http://bis.zju.edu.cn/CancerNet), which contains information about PPIs, miRNA-target interactions and functionally synergistic miRNA-miRNA pairs across 33 human cancer types. In addition, PPI information across 33 main normal tissues and cell types are included. Flexible query methods are allowed to retrieve cancer molecular interactions. Network viewer can be used to visualize interactions that users are interested in. Enrichment analysis tool was designed to detect significantly overrepresented Gene Ontology categories of miRNA targets. Thus, CancerNet serves as a comprehensive platform for assessing the roles of proteins and miRNAs, as well as their interactions across human cancers.
引用
收藏
页码:e177 / e177
页数:7
相关论文
共 50 条
  • [1] CancerNet: a database for decoding multilevel molecular interactions across diverse cancer types
    X Meng
    J Wang
    C Yuan
    X Li
    Y Zhou
    R Hofestädt
    M Chen
    Oncogenesis, 2015, 4 : e177 - e177
  • [2] Analysis of microRNA-target interactions across diverse cancer types
    Jacobsen, Anders
    Silber, Joachim
    Harinath, Girish
    Huse, Jason T.
    Schultz, Nikolaus
    Sander, Chris
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (11) : 1325 - U131
  • [3] Analysis of microRNA-target interactions across diverse cancer types
    Anders Jacobsen
    Joachim Silber
    Girish Harinath
    Jason T Huse
    Nikolaus Schultz
    Chris Sander
    Nature Structural & Molecular Biology, 2013, 20 : 1325 - 1332
  • [4] Clinical and molecular characteristics of kinase domain duplications across diverse cancer types in the Chinese population
    Lai, Xiaojing
    Yu, Ruoying
    Ou, Qiuxiang
    Bao, Hua
    Wu, Xue
    Shao, Yang
    Li, Yang
    Zhang, Ying
    Ding, Qingqing
    CANCER MEDICINE, 2023, 12 (05): : 6009 - 6015
  • [5] Disrupted cooperation between transcription factors across diverse cancer types
    Jing Wang
    Qi Liu
    Jingchun Sun
    Yu Shyr
    BMC Genomics, 17
  • [6] Disrupted cooperation between transcription factors across diverse cancer types
    Wang, Jing
    Liu, Qi
    Sun, Jingchun
    Shyr, Yu
    BMC GENOMICS, 2016, 17
  • [7] Survival Prediction Across Diverse Cancer Types Using Neural Networks
    Yan, Xu
    Wang, Weimin
    Xiao, MingXuan
    Li, Yufeng
    Gao, Min
    PROCEEDINGS OF THE 2024 THE 7TH INTERNATIONAL CONFERENCE ON MACHINE VISION AND APPLICATIONS, ICMVA 2024, 2024, : 134 - 138
  • [8] Molecular landmarks of tumor hypoxia across cancer types
    Bhandari, Vinayak
    Hoey, Christianne
    Liu, Lydia Y.
    Lalonde, Emilie
    Ray, Jessica
    Livingstone, Julie
    Lesurf, Robert
    Shiah, Yu-Jia
    Vujcic, Tina
    Huang, Xiaoyong
    Espiritu, Shadrielle M. G.
    Heisler, Lawrence E.
    Yousif, Fouad
    Huang, Vincent
    Yamaguchi, Takafumi N.
    Yao, Cindy Q.
    Sabelnykova, Veronica Y.
    Fraser, Michael
    Chua, Melvin L. K.
    van der Kwast, Theodorus
    Liu, Stanley K.
    Boutros, Paul C.
    Bristow, Robert G.
    NATURE GENETICS, 2019, 51 (02) : 308 - +
  • [9] Molecular landmarks of tumor hypoxia across cancer types
    Vinayak Bhandari
    Christianne Hoey
    Lydia Y. Liu
    Emilie Lalonde
    Jessica Ray
    Julie Livingstone
    Robert Lesurf
    Yu-Jia Shiah
    Tina Vujcic
    Xiaoyong Huang
    Shadrielle M. G. Espiritu
    Lawrence E. Heisler
    Fouad Yousif
    Vincent Huang
    Takafumi N. Yamaguchi
    Cindy Q. Yao
    Veronica Y. Sabelnykova
    Michael Fraser
    Melvin L. K. Chua
    Theodorus van der Kwast
    Stanley K. Liu
    Paul C. Boutros
    Robert G. Bristow
    Nature Genetics, 2019, 51 : 308 - 318
  • [10] ORIC-101 overcomes resistance to diverse chemotherapeutics across cancer types
    Zhou, Haiying
    Barkund, Shravani
    Pankov, Aleksandr
    Hegde, Ganapati
    Kong, Wayne
    Narayanan, Padmini
    Sun, Jessica D.
    Kabbarah, Omar
    Friedman, Lori S.
    Daemen, Anneleen
    CANCER RESEARCH, 2020, 80 (16)