Turing-Hopf bifurcation analysis in a diffusive Gierer-Meinhardt model

被引:1
|
作者
Sun, Anna [1 ]
Wu, Ranchao [1 ]
Chen, Mengxin [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 02期
基金
中国国家自然科学基金;
关键词
degenerate Hopf bifurcation; Turing-Hopf bifurcation; multiple time scale analysis; SPATIOTEMPORAL PATTERNS; SYSTEM; SATURATION; DYNAMICS;
D O I
10.3934/math.2021117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The reaction-diffusion Gierer-Meinhardt system in one dimensional bounded domain is considered in the present paper. The Hopf bifurcation is investigated, which is found to be degenerate. With the aid of Maple, the normal form associated with the degenerate Hopf bifurcation is obtained to determinate the existence of Bautin bifurcation. We get the universal unfolding for the Bautin bifurcation so that we can identify the stability of periodic solutions. Then, the existence of the codimension-two Turing-Hopf bifurcation is further investigated. To research the spatiotemporal dynamics of the model near the Turing-Hopf bifurcation point, the method of the multiple time scale analysis is adopted to derive the amplitude equations. It is noted that the Gierer-Meinhardt model may show the spatial, temporal or the spatiotemporal patterns, such as the nonconstant steady state, spatially homogeneous periodic solutions and the spatially inhomogeneous periodic solutions. Finally, some numerical simulations are presented to demonstrate the applicability of the theoretical results.
引用
收藏
页码:1920 / 1942
页数:23
相关论文
共 50 条
  • [21] Spatiotemporal dynamics of a diffusive SI model in the regions of Turing-Hopf bifurcation point
    Sun, Tian-Xiang
    Xue, Zhi-Chao
    Zhang, Hong-Tao
    NONLINEAR DYNAMICS, 2025, 113 (09) : 10681 - 10703
  • [22] Bogdanov-Takens Bifurcation of Codimension 3 in the Gierer-Meinhardt Model
    Wu, Ranchao
    Yang, Lingling
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (14):
  • [23] Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model
    Kolokolnikov, T
    Ward, MJ
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (04): : 1033 - 1064
  • [24] Turing instability of periodic solutions for the Gierer-Meinhardt model with cross-diffusion
    Liu, Haicheng
    Ge, Bin
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [25] Turing instability in the one-parameter Gierer-Meinhardt system
    Revina, S. V.
    Ryabov, A. S.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2023, 31 (04): : 501 - 522
  • [26] Turing instability for a semi-discrete Gierer-Meinhardt system
    Mai, F. X.
    Qin, L. J.
    Zhang, G.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (05) : 2014 - 2022
  • [27] Spike pinning for the Gierer-Meinhardt model
    Iron, D
    Ward, MJ
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 55 (4-6) : 419 - 431
  • [28] Codimension-Two Bifurcation Analysis on a Discrete Gierer-Meinhardt System
    Liu, Xijuan
    Liu, Yun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (16):
  • [29] Turing-Hopf bifurcation analysis and normal form of a diffusive Brusselator model with gene expression time delay
    Lv, Yehu
    Liu, Zhihua
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [30] Investigation Occurrences of Turing Pattern in Schnakenberg and Gierer-Meinhardt Equation
    Nurahmi, Annisa Fitri
    Putra, Prama Setia
    Nuraini, Nuning
    SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH) 2017, 2018, 1937