Implied Stochastic Volatility Models

被引:17
|
作者
Ait-Sahalia, Yacine [1 ,2 ]
Li, Chenxu [3 ]
Li, Chen Xu [4 ]
机构
[1] Princeton Univ, Dept Econ, Princeton, NJ 08544 USA
[2] NBER, Cambridge, MA 02138 USA
[3] Peking Univ, Guanghua Sch Management, Beijing, Peoples R China
[4] Renmin Univ China, Sch Business, Beijing 100872, Peoples R China
来源
REVIEW OF FINANCIAL STUDIES | 2021年 / 34卷 / 01期
基金
中国国家自然科学基金;
关键词
MAXIMUM-LIKELIHOOD-ESTIMATION; NONPARAMETRIC-ESTIMATION; ASYMPTOTIC-EXPANSION; RISK PREMIA; OPTIONS; APPROXIMATION; SPECIFICATION; DYNAMICS; RETURNS; FORMULA;
D O I
10.1093/rfs/hhaa041
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper proposes "implied stochastic volatility models" designed to fit option-implied volatility data and implements a new estimation method for such models. The method is based on explicitly linking observed shape characteristics of the implied volatility surface to the coefficient functions that define the stochastic volatility model. The method can be applied to estimate a fully flexible nonparametric model, or to estimate by the generalized method of moments any arbitrary parametric stochastic volatility model, affine or not. Empirical evidence based on S&P 500 index options data show that the method is stable and performs well out of sample.
引用
收藏
页码:394 / 450
页数:57
相关论文
共 50 条
  • [41] The memory of stochastic volatility models
    Robinson, PM
    [J]. JOURNAL OF ECONOMETRICS, 2001, 101 (02) : 195 - 218
  • [42] Stochastic volatility duration models
    Ghysels, E
    Gouriéroux, C
    Jasiak, J
    [J]. JOURNAL OF ECONOMETRICS, 2004, 119 (02) : 413 - 433
  • [43] MULTIFRACTIONAL STOCHASTIC VOLATILITY MODELS
    Corlay, Sylvain
    Lebovits, Joachim
    Vehel, Jacques Levy
    [J]. MATHEMATICAL FINANCE, 2014, 24 (02) : 364 - 402
  • [44] Complications with stochastic volatility models
    Sin, CA
    [J]. ADVANCES IN APPLIED PROBABILITY, 1998, 30 (01) : 256 - 268
  • [45] Gamma stochastic volatility models
    Abraham, B
    Balakrishna, N
    Sivakumar, R
    [J]. JOURNAL OF FORECASTING, 2006, 25 (03) : 153 - 171
  • [46] INFLUENCE IN STOCHASTIC VOLATILITY MODELS
    Motta, Anderson C. O.
    Hotta, Luiz K.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2012, 27 (01) : 27 - 45
  • [47] Complete models with stochastic volatility
    Hobson, DG
    Rogers, LCG
    [J]. MATHEMATICAL FINANCE, 1998, 8 (01) : 27 - 48
  • [48] Stochastic volatility and DSGE models
    Andreasen, Martin M.
    [J]. ECONOMICS LETTERS, 2010, 108 (01) : 7 - 9
  • [49] On calibration of stochastic and fractional stochastic volatility models
    Mrazek, Milan
    Pospisil, Jan
    Sobotka, Tomas
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 254 (03) : 1036 - 1046
  • [50] VOLATILITY INFERENCE AND RETURN DEPENDENCIES IN STOCHASTIC VOLATILITY MODELS
    Pfante, Oliver
    Bertschinger, Nils
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2019, 22 (03)