On the Effectiveness of Labeled Latent Dirichlet Allocation in Automatic Bug-Report Categorization

被引:9
|
作者
Zibran, Minhaz F. [1 ]
机构
[1] Univ New Orleans, 2000 Lakeshore Dr, New Orleans, LA 70148 USA
关键词
bug-report; automatic categorization; topic modelling; LLDA;
D O I
10.1145/2889160.2892646
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Bug-reports are valuable sources of information. However, study of the bug-reports' content written in natural language demands tedious human efforts for manual interpretation. This difficulty limits the scale of empirical studies, which rely on interpretation and categorization of bug-reports. In this work, we investigate the effectiveness of Labeled Latent Dirichlet Allocation (LLDA) in automatic classification of bug-reports into a predefined set of categories.
引用
收藏
页码:713 / 715
页数:3
相关论文
共 33 条
  • [31] Automatic detection of relevant information, predictions and forecasts in financial news through topic modelling with Latent Dirichlet Allocation
    Garcia-Mendez, Silvia
    de Arriba-Perez, Francisco
    Barros-Vila, Ana
    Gonzalez-Castano, Francisco J. J.
    Costa-Montenegro, Enrique
    [J]. APPLIED INTELLIGENCE, 2023, 53 (16) : 19610 - 19628
  • [32] Automatic Topic Clustering Using Latent Dirichlet Allocation with Skip-gram Model on Final Project Abstracts
    Bunyamin, Hendra
    Sulistiani, Lisan
    [J]. 2017 21ST INTERNATIONAL COMPUTER SCIENCE AND ENGINEERING CONFERENCE (ICSEC 2017), 2017, : 264 - 267
  • [33] Predicting Trends and Research Patterns of Smart Cities: A Semi-Automatic Review Using Latent Dirichlet Allocation (LDA)
    Sharma, Chetan
    Batra, Isha
    Sharma, Shamneesh
    Malik, Arun
    Hosen, A. S. M. Sanwar
    Ra, In-Ho
    [J]. IEEE ACCESS, 2022, 10 : 121080 - 121095