On the weak-approximate fixed point property

被引:7
|
作者
Barroso, Cleon S. [1 ]
Lin, Pei-Kee [2 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[2] Univ Memphis, Dept Math, Memphis, TN 38152 USA
关键词
Weakly null sequences; Rosenthal's l(1)-theorem; Fixed point property; Asymptotic approximation; Weak topology; THEOREMS; SPACES;
D O I
10.1016/j.jmaa.2009.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a Banach space and C a bounded, closed, convex subset of X, C is said to have the weak-approximate fixed point property if for any norm-continuous mapping f : C -> C, there exists a sequence {x(n)} in C such that (x(n) - f (x(n)))(n) converges to 0 weakly. It is known that every infinite-dimensional Banach space with the Schur property does not have the weak-approximate fixed point property. In this article. we show that every Asplund space has the weak-approximate fixed point property. Applications to the asymptotic fixed point theory are given. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 50 条
  • [1] An approximate fixed point property
    Lee, M.
    Morales, C. A.
    Park, J.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2024, 344
  • [2] THE PROPERTY WORTH* AND THE WEAK FIXED POINT PROPERTY
    Dalby, Tim
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2014, 15 (05) : 919 - 927
  • [3] APPROXIMATE FIXED POINT PROPERTY IN IFNS
    Erturk, Muzeyyen
    Karakaya, Vatan
    Mursaleen, Mohammad
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 329 - 346
  • [4] Property (M) and the weak fixed point property
    Falset, JG
    Sims, B
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (10) : 2891 - 2896
  • [5] NEW EXISTENCE THEOREMS FOR APPROXIMATE COINCIDENCE POINT PROPERTY AND APPROXIMATE FIXED POINT PROPERTY WITH APPLICATIONS TO METRIC FIXED POINT THEORY
    Du, Wei-Shih
    He, Zhenhua
    Chen, Yi-Liang
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2012, 13 (03) : 459 - 474
  • [6] Spaces not containing l1 have weak approximate fixed point property
    Kalenda, Ondrej F. K.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) : 134 - 137
  • [7] On the approximate fixed point property in abstract spaces
    C. S. Barroso
    O. F. K. Kalenda
    P.-K. Lin
    [J]. Mathematische Zeitschrift, 2012, 271 : 1271 - 1285
  • [8] On the approximate fixed point property in abstract spaces
    Barroso, C. S.
    Kalenda, O. F. K.
    Lin, P-K
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1271 - 1285
  • [9] The approximate fixed point property in product spaces
    Kohlenbach, U.
    Leustean, L.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (04) : 806 - 818
  • [10] On topological groups with an approximate fixed point property
    Barroso, Cleon S.
    Mbombo, Brice R.
    Pestov, Vladimir G.
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2017, 89 (01): : 19 - 30