Spaces not containing l1 have weak approximate fixed point property

被引:5
|
作者
Kalenda, Ondrej F. K. [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Prague 18675 8, Czech Republic
关键词
Weak approximate fixed point property; l(1)-sequence; Frechet-Urysohn space; BANACH-SPACES; COMPACT; SETS;
D O I
10.1016/j.jmaa.2010.06.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonempty closed convex bounded subset C of a Banach space is said to have the weak approximate fixed point property if for every continuous map f : C -> C there is a sequence {x(n)} in C such that x(n) - f (x(n)) converge weakly to 0. We prove in particular that C has this property whenever it contains no sequence equivalent to the standard basis of l(1). As a byproduct we obtain a characterization of Banach spaces not containing l(1) in terms of the weak topology. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 137
页数:4
相关论文
共 50 条
  • [1] Weak* fixed point property in l1 and polyhedrality in Lindenstrauss spaces
    Casini, Emanuele
    Miglierina, Enrico
    Piasecki, Lukasz
    Popescu, Roxana
    [J]. STUDIA MATHEMATICA, 2018, 241 (02) : 159 - 172
  • [2] Stability constants of the weak* fixed point property for the space l1
    Casini, Emanuele
    Miglierina, Enrico
    Piasecki, Lukasz
    Popescu, Roxana
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (01) : 673 - 684
  • [3] The point of continuity property in Banach spaces not containing l1
    Lopez Perez, Gines
    Soler Arias, Jose A.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2012, 191 (01) : 347 - 361
  • [4] The convex point of continuity property in Banach spaces not containing l1
    Lopez Perez, Gines
    Soler Arias, Jose A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) : 734 - 740
  • [5] Compactness and the fixed point property in l1
    Dominguez-Benavides, T.
    Japon, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (01) : 69 - 79
  • [6] Renorming of l1 and the fixed point property
    Lin, Pei-Kee
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) : 534 - 541
  • [7] A fixed point theorem for L1 spaces
    U. Bader
    T. Gelander
    N. Monod
    [J]. Inventiones mathematicae, 2012, 189 : 143 - 148
  • [8] On the weak-approximate fixed point property
    Barroso, Cleon S.
    Lin, Pei-Kee
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 171 - 175
  • [9] Banach spaces with a basis that are hereditarily asymptotically isometric to l1 and the fixed point property
    Fetter, Helga
    Gamboa de Buen, Berta
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) : 4598 - 4608
  • [10] On the approximate fixed point property in abstract spaces
    Barroso, C. S.
    Kalenda, O. F. K.
    Lin, P-K
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1271 - 1285