Strategies for approaching one hundred percent dense lithium-ion battery cathodes

被引:3
|
作者
Johnson, A. C. [1 ]
Dunlop, A. J. [1 ]
Kohlmeyer, R. R. [2 ]
Kiggins, C. T. [2 ]
Blake, A. J. [2 ]
Singh, S., V [2 ]
Beale, E. M. [2 ]
Zahiri, B. [3 ]
Patra, A. [3 ]
Yue, X. [1 ]
Cook, J. B. [2 ]
Braun, P., V [3 ]
Pikul, J. H. [1 ]
机构
[1] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
[2] Xenon Adv Battery Corp, Kettering, OH 45420 USA
[3] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Mat Sci & Engn, Mat Res Lab, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Lithium-ion; High energy; Battery architecture; Thick electrodes; Transport simulations; THICK ELECTRODES; LICOO2; DIFFUSION; ORIENTATION; FILM; PERFORMANCE; SIMULATION; KINETICS; POROSITY; DESIGN;
D O I
10.1016/j.jpowsour.2022.231359
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Increasing the density and thickness of battery electrodes can lower costs, ease manufacturing, and increase energy density; however, existing electrode architectures cannot simultaneously enable thick and dense electrodes with good power densities. In particle-based architectures, long range lithium-ion transport primarily occurs through the electrolyte, but electrolyte transport pathways disappear as electrode density approaches 100%. The loss of these transport pathways leads to dramatic capacity reductions at moderate discharge rates and has set minimum porosity limits for commercial cells. This work examines transport through three thick and dense cathode architectures to understand the interdependent impact of inter-particle interfaces, continuous diffusion lengths, solid volume fraction, solid diffusivity, cathode thickness, and discharge rate on areal capacity. We demonstrate the advantages of continuous cathode architectures and show how the combination of high diffusivity and continuous solid diffusion pathways can yield 65% increases in areal capacity over a conventional, particle-based electrode at 85% solids volume fraction. We also show that combining these high-diffusivity, continuous cathode architectures with solid electrolytes can overcome some of the inherent limitations of current solid-state battery designs.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Quantum chemistry of lithium-ion battery cathodes
    Wang, Bo
    Truhlar, Donald G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [2] An Agglomerate Model of Lithium-Ion Battery Cathodes
    Lueth, S.
    Sauter, U. S.
    Bessler, W. G.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) : A210 - A222
  • [3] Charging Up Lithium-Ion Battery Cathodes
    Johnson, Christopher S.
    JOULE, 2018, 2 (03) : 373 - 375
  • [4] Recent advances in synthesis and modification strategies for lithium-ion battery ternary cathodes
    Tong, Zhengwang
    Li, Zhao
    Tan, Lei
    Li, Yan
    Wang, Lei
    Shang, Yu
    Bi, Jiaying
    Jiang, Hao
    Lei, Shubin
    Zhu, Wenfeng
    Zhang, Li
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [5] Lithium migration between blended cathodes of a lithium-ion battery
    Kobayashi, Takeshi
    Kobayashi, Yo
    Miyashiro, Hajime
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (18) : 8653 - 8661
  • [6] Performance Predictors for Organic Cathodes of Lithium-Ion Battery
    Sakano, Kosuke
    Igarashi, Yasuhiko
    Imai, Hiroaki
    Miyakawa, Shuntaro
    Saito, Takaya
    Takayanagi, Yoshiki
    Nishiyama, Koji
    Oaki, Yuya
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02) : 2074 - 2082
  • [7] Virtual Electrode Design for Lithium-Ion Battery Cathodes
    Joos, Jochen
    Buchele, Alexander
    Schmidt, Adrian
    Weber, Andre
    Ivers-Tiffee, Ellen
    ENERGY TECHNOLOGY, 2021, 9 (06)
  • [8] Revisiting metal fluorides as lithium-ion battery cathodes
    Xiao Hua
    Alexander S. Eggeman
    Elizabeth Castillo-Martínez
    Rosa Robert
    Harry S. Geddes
    Ziheng Lu
    Chris J. Pickard
    Wei Meng
    Kamila M. Wiaderek
    Nathalie Pereira
    Glenn G. Amatucci
    Paul A. Midgley
    Karena W. Chapman
    Ullrich Steiner
    Andrew L. Goodwin
    Clare P. Grey
    Nature Materials, 2021, 20 : 841 - 850
  • [9] Defect chemical aspects of lithium-ion battery cathodes
    Schoonman, J
    Tuller, HL
    Kelder, EM
    JOURNAL OF POWER SOURCES, 1999, 81 : 44 - 48
  • [10] Revisiting metal fluorides as lithium-ion battery cathodes
    Hua, Xiao
    Eggeman, Alexander S.
    Castillo-Martinez, Elizabeth
    Robert, Rosa
    Geddes, Harry S.
    Lu, Ziheng
    Pickard, Chris J.
    Meng, Wei
    Wiaderek, Kamila M.
    Pereira, Nathalie
    Amatucci, Glenn G.
    Midgley, Paul A.
    Chapman, Karena W.
    Steiner, Ullrich
    Goodwin, Andrew L.
    Grey, Clare P.
    NATURE MATERIALS, 2021, 20 (06) : 841 - +