Enhanced Optical Conductivity of Bilayer Graphene Nanoribbons in the Terahertz Regime

被引:122
|
作者
Wright, A. R. [1 ]
Cao, J. C. [2 ]
Zhang, C. [1 ]
机构
[1] Univ Wollongong, Sch Engn Phys, Wollongong, NSW 2552, Australia
[2] Chinese Acad Sci, State Key Lab Funct Mat Informat, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
基金
澳大利亚研究理事会;
关键词
BAND-STRUCTURE; SEMICONDUCTORS; GRAPHITE;
D O I
10.1103/PhysRevLett.103.207401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We reveal that there exists a class of graphene structures (a subclass of bilayer graphene nanoribbons) which has an exceptionally strong optical response in the terahertz (THz) and far infrared (FIR) regime. The peak conductance of THz/FIR active bilayer ribbons is around 2 orders of magnitude higher than the universal conductance of sigma(0)=e(2)/4h observed in graphene sheets. The criterion for the THz/FIR active subclass is a bilayer graphene nanoribbon with a one-dimensional massless Dirac fermion energy dispersion near the Gamma point. Our results overcome a significant obstacle that hinders the potential application of graphene in electronics and photonics.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Transverse thermoelectric conductivity of bilayer graphene in the quantum Hall regime
    Wang, Chang-Ran
    Lu, Wen-Sen
    Lee, Wei-Li
    PHYSICAL REVIEW B, 2010, 82 (12):
  • [22] Nanoscale terahertz conductivity and ultrafast dynamics of terahertz plasmons in periodic arrays of epitaxial graphene nanoribbons
    Singh, Arvind
    Nemec, Hynek
    Kunc, Jan
    Kuzel, Petr
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [23] Controlling the orbital Hall effect in gapped bilayer graphene in the terahertz regime
    Cysne, Tarik P.
    Kork-Kamp, W. J. M.
    Rappoport, Tatiana G.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [24] Nonlinear optical conductivity of Weyl semimetals in the terahertz regime
    Zhong, Y.
    Feng, W.
    Liu, Zheng
    Zhang, C.
    Cao, J. C.
    PHYSICA B-CONDENSED MATTER, 2019, 555 : 81 - 84
  • [25] Strong nonlinear optical response of graphene in the terahertz regime
    Wright, A. R.
    Xu, X. G.
    Cao, J. C.
    Zhang, C.
    APPLIED PHYSICS LETTERS, 2009, 95 (07)
  • [26] Local optical conductivity of bilayer graphene with kink potential
    Dai, Zhen-Bing
    Li, Zhiqiang
    He, Yan
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [27] Stacking-Dependent Optical Conductivity of Bilayer Graphene
    Wang, Yingying
    Ni, Zhenhua
    Liu, Lei
    Liu, Yanhong
    Cong, Chunxiao
    Yu, Ting
    Wang, Xiaojun
    Shen, Dezhen
    Shen, Zexiang
    ACS NANO, 2010, 4 (07) : 4074 - 4080
  • [28] Optical conductivity of twisted bilayer graphene under heterostrain
    Cai Xiao-Xiao
    Luo Guo-Yu
    Li Zhi-Qiang
    He Yan
    ACTA PHYSICA SINICA, 2021, 70 (18)
  • [29] Optical conductivity of bilayer graphene with and without an asymmetry gap
    Nicol, E. J.
    Carbotte, J. P.
    PHYSICAL REVIEW B, 2008, 77 (15):
  • [30] Robustness of the optical conductivity sum rule in bilayer graphene
    Benfatto, L.
    Sharapov, S. G.
    Carbotte, J. P.
    PHYSICAL REVIEW B, 2008, 77 (12)