A weak type inequality for the maximal operator of (C, α)-means of Fourier series with respect to the Walsh-Kaczmarz system

被引:21
|
作者
Gat, Gy. [1 ]
Goginava, U. [2 ]
机构
[1] Coll Nyiregyhaza, Inst Math & Comp Sci, H-4400 Nyiregyhaza, Hungary
[2] Tbilisi State Univ, Fac Exact & Nat Sci, Inst Math, GE-0128 Tbilisi, Georgia
关键词
Walsh-Kaczmarz system; Cesaro means; Hardy space; CESARO SUMMABILITY;
D O I
10.1007/s10474-009-8217-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Simon [12] proved that the maximal operator of (C, alpha)-means of Fourier series with respect to the Walsh-Kaczmarz system is bounded from the martingale Hardy space H (p) to the space L (p) for p > 1/(1 + alpha). In this paper we prove that this boundedness result does not hold if p a parts per thousand broken vertical bar 1/(1 + alpha). However, in the endpoint case p = 1/(1 + alpha) the maximal operator sigma (*) (alpha,k) is bounded from the martingale Hardy space H (1/(1+alpha)) to the space weak-L (1/(1+alpha)).
引用
收藏
页码:65 / 83
页数:19
相关论文
共 50 条