Role of the stratospheric chemistry-climate interactions in the hot climate conditions of the Eocene

被引:6
|
作者
Szopa, Sophie [1 ]
Thieblemont, Remi [1 ]
Bekki, Slimane [2 ,3 ]
Botsyun, Svetlana [1 ,4 ]
Sepulchre, Pierre [1 ]
机构
[1] Univ Paris Saclay, LSCE, IPSL, CEA,CNRS,UVSQ, Gif Sur Yvette, France
[2] Sorbonne Univ, Lab Atmosphere Milieux, Observat Spatiales, Inst Pierre Simon Laplace,LATMOS,IPSLCNRS,UVSQ, Guyancourt, France
[3] Sorbonne Univ, Lab Atmosphere Milieux, Observat Spatiales, Inst Pierre Simon Laplace,LATMOS,IPSLCNRS,UVSQ, Paris, France
[4] Univ Tubingen, Dept Geosci, Tubingen, Germany
关键词
EXPERIMENTAL-DESIGN; QUADRUPLED CO2; OZONE; MODEL; SENSITIVITY; SIMULATIONS; VEGETATION; FEEDBACKS; EVOLUTION;
D O I
10.5194/cp-15-1187-2019
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The stratospheric ozone layer plays a key role in atmospheric thermal structure and circulation. Although stratospheric ozone distribution is sensitive to changes in trace gases concentrations and climate, the modifications of stratospheric ozone are not usually considered in climate studies at geological timescales. Here, we evaluate the potential role of stratospheric ozone chemistry in the case of the Eocene hot conditions. Using a chemistry-climate model, we show that the structure of the ozone layer is significantly different under these conditions (4 x CO2 climate and high concentrations of tropospheric N2O and CH4). The total column ozone (TCO) remains more or less unchanged in the tropics whereas it is found to be enhanced at mid-and high latitudes. These ozone changes are related to the stratospheric cooling and an acceleration of stratospheric Brewer-Dobson circulation simulated under Eocene climate. As a consequence, the meridional distribution of the TCO appears to be modified, showing particularly pronounced midlatitude maxima and a steeper negative poleward gradient from these maxima. These anomalies are consistent with changes in the seasonal evolution of the polar vortex during winter, especially in the Northern Hemisphere, found to be mainly driven by seasonal changes in planetary wave activity and stratospheric wave-drag. Compared to a preindustrial atmospheric composition, the changes in local ozone concentration reach up to 40% for zonal annual mean and affect temperature by a few kelvins in the middle stratosphere. As inter-model differences in simulating deep-past temperatures are quite high, the consideration of atmospheric chemistry, which is computationally demanding in Earth system models, may seem superfluous. However, our results suggest that using stratospheric ozone calculated by the model (and hence more physically consistent with Eocene conditions) instead of the commonly specified preindustrial ozone distribution could change the simulated global surface air temperature by as much as 14 %. This error is of the same order as the effect of non-CO2 boundary conditions (topography, bathymetry, solar constant and vegetation). Moreover, the results highlight the sensitivity of stratospheric ozone to hot climate conditions. Since the climate sensitivity to stratospheric ozone feedback largely differs between models, it must be better constrained not only for deep-past conditions but also for future climates.
引用
收藏
页码:1187 / 1203
页数:17
相关论文
共 50 条
  • [31] Evaluating how photochemistry and transport determine stratospheric inorganic chlorine in coupled chemistry-climate models
    Struthers, H.
    Bodeker, G. E.
    Smale, D.
    Rozanov, E.
    Schraner, M.
    Peter, T.
    GEOPHYSICAL RESEARCH LETTERS, 2009, 36
  • [32] Dynamical amplification of the stratospheric solar response simulated with the Chemistry-Climate Model LMDz-Reprobus
    Marchand, M.
    Keckhut, P.
    Lefebvre, S.
    Claud, C.
    Cugnet, D.
    Hauchecorne, A.
    Lefevre, F.
    Lefebvre, M. -P.
    Jumelet, J.
    Lott, F.
    Hourdin, F.
    Thuillier, G.
    Poulain, V.
    Bossay, S.
    Lemennais, P.
    David, C.
    Bekki, S.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2012, 75 : 147 - 160
  • [33] Trends of Lower- to Mid-Stratospheric Water Vapor Simulated in Chemistry-Climate Models
    HU Ding-Zhu
    HAN Yuan-Yuan
    SANG Wen-Jun
    XIE Fei
    Atmospheric and Oceanic Science Letters, 2015, 8 (01) : 57 - 62
  • [34] Uncertainties and assessments of chemistry-climate models of the stratosphere
    Austin, J
    Shindell, D
    Beagley, SR
    Brühl, C
    Dameris, M
    Manzini, E
    Nagashima, T
    Newman, P
    Pawson, S
    Pitari, G
    Rozanov, E
    Schnadt, C
    Shepherd, TG
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2003, 3 : 1 - 27
  • [35] Stratospheric water vapor feedback and its climate impacts in the coupled atmosphere–ocean Goddard Earth Observing System Chemistry-Climate Model
    Feng Li
    Paul Newman
    Climate Dynamics, 2020, 55 : 1585 - 1595
  • [36] Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections
    LeGrande, Allegra N.
    Tsigaridis, Kostas
    Bauer, Susanne E.
    NATURE GEOSCIENCE, 2016, 9 (09) : 652 - 655
  • [37] Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections
    Legrande A.N.
    Tsigaridis K.
    Bauer S.E.
    Nature Geoscience, 2016, 9 (9) : 652 - 655
  • [38] Sensitivity of the tropical stratospheric ozone response to the solar rotational cycle in observations and chemistry-climate model simulations
    Thieblemont, Remi
    Marchand, Marion
    Bekki, Slimane
    Bossay, Sebastien
    Lefevre, Franck
    Meftah, Mustapha
    Hauchecorne, Alain
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (16) : 9897 - 9916
  • [39] Comment on 'Quantitative performance metrics for stratospheric-resolving chemistry-climate models' by Waugh and Eyring (2008)
    Grewe, V.
    Sausen, R.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (23) : 9101 - 9110
  • [40] Contribution of different processes to changes in tropical lower-stratospheric water vapor in chemistry-climate models
    Smalley, Kevin M.
    Dessler, Andrew E.
    Bekki, Slimane
    Deushi, Makoto
    Marchand, Marion
    Morgenstern, Olaf
    Plummer, David A.
    Shibata, Kiyotaka
    Yamashita, Yousuke
    Zeng, Guang
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (13) : 8031 - 8044