Relating ordinary and fully simple maps via monotone Hurwitz numbers

被引:0
|
作者
Borot, Gaetan [1 ]
Charbonnier, Severin [1 ]
Do, Norman [2 ]
Garcia-Failde, Elba [3 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[3] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2019年 / 26卷 / 03期
基金
澳大利亚研究理事会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A direct relation between the enumeration of ordinary maps and that of fully simple maps first appeared in the work of the first and last authors. The relation is via monotone Hurwitz numbers and was originally proved using Weingarten calculus for matrix integrals. The goal of this paper is to present two independent proofs that are purely combinatorial and generalise in various directions, such as to the setting of stuffed maps and hypermaps. The main motivation to understand the relation between ordinary and fully simple maps is the fact that it could shed light on fundamental, yet still not well-understood, problems in free probability and topological recursion.
引用
收藏
页数:24
相关论文
共 47 条
  • [21] Topological recursion for monotone orbifold Hurwitz numbers: a proof of the Do-Karev conjecture
    Kramer, Reinier
    Popolitov, Alexandr
    Shadrin, Sergey
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2022, 23 (02) : 809 - 827
  • [22] TAMING WILD SIMPLE CLOSED CURVES WITH MONOTONE MAPS
    BOYD, WS
    WRIGHT, AH
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1972, 24 (05): : 768 - 788
  • [23] Relating Fibonacci Numbers to Bernoulli Numbers via Balancing Polynomials
    Frontczak, Robert
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (05)
  • [24] QUASI-POLYNOMIALITY OF MONOTONE ORBIFOLD HURWITZ NUMBERS AND GROTHENDIECK'S DESSINS D'ENFANTS
    Kramer, Reinier
    Lewanski, Danilo
    Shadrin, Sergey
    DOCUMENTA MATHEMATICA, 2019, 24 : 857 - 898
  • [25] Rotation numbers for quasi-periodically forced monotone circle maps
    Stark, J
    Feudel, U
    Glendinning, PA
    Pikovsky, A
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2002, 17 (01): : 1 - 28
  • [26] b-Monotone Hurwitz Numbers: Virasoro Constraints, BKP Hierarchy, and O(N)-BGW Integral
    Bonzom, Valentin
    Chapuy, Guillaume
    Dolega, Maciej
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (14) : 12172 - 12230
  • [27] The tensor Harish-Chandra-Itzykson-Zuber integral I: Weingarten calculus and a generalization of monotone Hurwitz numbers
    Collins, Benoit
    Gurau, Razvan
    Lionni, Luca
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (05) : 1851 - 1897
  • [28] Periods for holomorphic maps via Lefschetz numbers
    Llibre, Jaume
    Todd, Michael
    ABSTRACT AND APPLIED ANALYSIS, 2005, (06) : 575 - 579
  • [29] Formal solutions to ordinary differential equation via dimensioned numbers
    Izumi, Hideaki
    COMPLEX DIFFERENTIAL AND DIFFERENCE EQUATIONS, 2019, : 379 - 389
  • [30] Periodic points of holomorphic maps via Lefschetz numbers
    Fagella, N
    Llibre, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) : 4711 - 4730