A Runge-Kutta neural network-based control method for nonlinear MIMO systems

被引:6
|
作者
Ucak, Kemal [1 ]
机构
[1] Mugla Sitki Kocman Univ Kotekli, Dept Elect & Elect Engn, Fac Engn, TR-48000 Mugla, Turkey
关键词
Adaptive controller; MIMO PID-type RK-NN controller; Runge-Kutta EKF; Runge-Kutta identification; Runge-Kutta neural network; Runge-Kutta parameter estimator; CONTROL MECHANISM; PREDICTIVE CONTROL; IDENTIFICATION; ANFIS;
D O I
10.1007/s00500-018-3405-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel Runge-Kutta neural network (RK-NN)-based control mechanism is introduced for multi-input multi-output ( MIMO) nonlinear systems. The overall architecture embodies an online Runge-Kutta model which computes a forward model of the system, an adaptive controller with tunable parameters and an adjustment mechanism realized by separate online Runge-Kutta neural networks to identify the dynamics of each tunable controller parameter. Runge-Kutta identification block has the competency to approximate the time-varying parameters of the model and unmeasurable states of the controlled system. Thus, the strengths of radial basis function (RBF) neural network structure and Runge-Kutta integration method are combined in this structure. Adaptive MIMO proportional-integral-derivative (PID) controller is deployed in the controller block. The control performance of the proposed adaptive control method has been evaluated via simulations performed on a nonlinear three-tank system and Van de Vusse benchmark system for different cases, and the obtained results reveal that the RK-NN-based control mechanism and Runge-Kutta model attain good control and modelling performances.
引用
收藏
页码:7769 / 7803
页数:35
相关论文
共 50 条
  • [11] Generalization of an input-to-state stability preserving Runge-Kutta method for nonlinear control systems
    Deflorian, Michael
    Rungger, Matthias
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 346 - 352
  • [12] Runge-Kutta methods for affinely controlled nonlinear systems
    Kloeden, Peter E.
    Rossler, Andreas
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (02) : 957 - 968
  • [13] Input-to-state stability of Runge-Kutta methods for nonlinear control systems
    Hu, Guang-Da
    Liu, Mingzhu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) : 633 - 639
  • [14] A MODIFIED RUNGE-KUTTA METHOD
    CHAI, AS
    [J]. SIMULATION, 1968, 10 (05) : 221 - &
  • [15] GENERALIZED RUNGE-KUTTA METHOD
    LENSING, J
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1976, 56 (11): : 503 - 504
  • [16] CORRECTIONS ON RUNGE-KUTTA METHOD
    LADOUCEUR, F
    [J]. BYTE, 1986, 11 (09): : 372 - 372
  • [17] NOTE ON THE RUNGE-KUTTA METHOD
    MILNE, WE
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1950, 44 (05): : 549 - 550
  • [18] A RESTRICTED RUNGE-KUTTA METHOD
    LANDRY, GJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 140 - &
  • [19] Periodic behavior of a class of nonlinear dynamic systems based on the Runge-Kutta algorithm
    Luo, Hongying
    Liu, Jun
    Li, Xuebin
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (02) : 1471 - 1476
  • [20] Integration method and Runge-Kutta method
    Sanprasert, Wannaporn
    Chundang, Ungsana
    Podisuk, Maitree
    [J]. PROCEEDINGS OF THE 15TH AMERICAN CONFERENCE ON APPLIED MATHEMATICS AND PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES 2009, VOLS I AND II, 2009, : 232 - +