AN AUTOMATED SEGMENTATION OF NATURA 2000 HABITATS FROM SENTINEL-2 OPTICAL DATA

被引:8
|
作者
Mikula, Karol [1 ,2 ]
Urban, Jozef [1 ,2 ]
Kollar, Michal [1 ,2 ]
Ambroz, Martin [1 ,2 ]
Jarolimek, Ivan [3 ]
Sibik, Jozef [3 ]
Sibikova, Maria [3 ]
机构
[1] Slovak Univ Technol Bratislava, Dept Math, Radlinskeho 11, Bratislava 81005, Slovakia
[2] Algoritmy SK Sro, Sulekova 6, Bratislava 81106, Slovakia
[3] Slovak Acad Sci, Inst Bot, Dubravska Cesta 9, Bratislava 84523, Slovakia
来源
关键词
Image segmentation; curve evolution; numerical method; Natura; 2000; satellite images; Sentinel-2; FLOW;
D O I
10.3934/dcdss.2020348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a mathematical model and numerical method designed for the segmentation of satellite images, namely to obtain in an automated way borders of Natura 2000 habitats from Sentinel-2 optical data. The segmentation model is based on the evolving closed plane curve approach in the Lagrangian formulation including the efficient treatment of topological changes. The model contains the term expanding the curve in its outer normal direction up to the region of habitat boundary edges, the term attracting the curve accurately to the edges and the smoothing term given by the influence of local curvature. For the numerical solution, we use the flowing finite volume method discretizing the arising advection-diffusion intrinsic partial differential equation including the asymptotically uniform tangential redistribution of curve grid points. We present segmentation results for satellite data from a selected area of Western Slovakia (Zahorie) where the so-called riparian forests represent the important European Natura 2000 habitat. The automatic segmentation results are compared with the semi-automatic segmentation performed by the botany expert and with the GPS tracks obtained in the field. The comparisons show the ability of our numerical model to segment the habitat areas with the accuracy comparable to the pixel resolution of the Sentinel-2 optical data.
引用
收藏
页码:1017 / 1032
页数:16
相关论文
共 50 条
  • [31] Multitemporal Sentinel-2 data - remarks and observations
    Kukawska, Ewa
    Lewinski, Stanislaw
    Krupinski, Michal
    Malinowski, Radoslaw
    Nowakowski, Artur
    Rybicki, Marcin
    Kotarba, Andrzej
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [32] Monitoring Mangroves Using Sentinel-2 data
    Jadav, Ravindra
    Gogoi, Priti Rekha
    Hans, Aradhana Lucky
    Selvam, N. Thamizh
    Deobhanj, Sanghamitra
    Chetia, Monisha
    Unni, Anjana
    CURRENT SCIENCE, 2020, 118 (06): : 859 - 859
  • [33] Automated Recognition of Tree Species Composition of Forest Communities Using Sentinel-2 Satellite Data
    Polyakova, Alika
    Mukharamova, Svetlana
    Yermolaev, Oleg
    Shaykhutdinova, Galiya
    REMOTE SENSING, 2023, 15 (02)
  • [34] Mapping riverbed sediment size from Sentinel-2 satellite data
    Marchetti, Giulia
    Bizzi, Simone
    Belletti, Barbara
    Lastoria, Barbara
    Comiti, Francesco
    Carbonneau, Patrice Enrique
    EARTH SURFACE PROCESSES AND LANDFORMS, 2022, 47 (10) : 2544 - 2559
  • [35] An Algorithm to Retrieve Precipitable Water Vapor from Sentinel-2 Data
    Zhao, Yibo
    Lei, Shaogang
    Zhu, Guoqing
    Shi, Yunxi
    Wang, Cangjiao
    Li, Yuanyuan
    Su, Zhaorui
    Wang, Weizhong
    REMOTE SENSING, 2023, 15 (05)
  • [36] LEAF CHLOROPHYLL CONTENT ESTIMATION FROM SENTINEL-2 MSI DATA
    Ma, Qingmiao
    Chen, Jing M.
    Li, Yingjie
    Croft, Holly
    Luo, Xiangzhong
    Zheng, Ting
    Zamaria, Sophia
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2915 - 2918
  • [37] Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data
    Bartsch, Annett
    Widhalm, Barbara
    Leibman, Marina
    Ermokhina, Ksenia
    Kumpula, Timo
    Skarin, Anna
    Wilcox, Evan J.
    Jones, Benjamin M.
    Frost, Gerald V.
    Hoefler, Angelika
    Pointner, Georg
    REMOTE SENSING OF ENVIRONMENT, 2020, 237
  • [38] GLCM FEATURES FOR LEARNING FLOODED VEGETATION FROM SENTINEL-1 AND SENTINEL-2 DATA
    Tavus, Beste
    Kocaman, Sultan
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 601 - 607
  • [39] Estimation of the Water Level in the Ili River from Sentinel-2 Optical Data Using Ensemble Machine Learning
    Mukhamediev, Ravil I.
    Terekhov, Alexey
    Sagatdinova, Gulshat
    Amirgaliyev, Yedilkhan
    Gopejenko, Viktors
    Abayev, Nurlan
    Kuchin, Yan
    Popova, Yelena
    Symagulov, Adilkhan
    REMOTE SENSING, 2023, 15 (23)
  • [40] Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery
    Mucher, Caspar A.
    Kooistra, Lammert
    Vermeulen, Marleen
    Vanden Borre, Jeroen
    Haest, Birgen
    Haveman, Rense
    ECOLOGICAL INDICATORS, 2013, 33 : 71 - 81