Adaptive and optimal pointwise deconvolution density estimations by wavelets

被引:4
|
作者
Wu, Cong [1 ,2 ]
Zeng, Xiaochen [1 ]
Mi, Na [1 ]
机构
[1] Beijing Univ Technol, Coll Math, Fac Sci, Beijing 100124, Peoples R China
[2] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
基金
中国国家自然科学基金;
关键词
Wavelets; Thresholding; Data driven; Deconvolution; Density estimation; 42C40; 62G07; 62G20; CONVERGENCE;
D O I
10.1007/s10444-021-09844-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers multivariate deconvolution density estimations under the local Holder condition by wavelet methods. A pointwise lower bound of the deconvolution model is first investigated; then we provide a linear wavelet estimate to obtain the optimal convergence rate. The nonlinear wavelet estimator is introduced for adaptivity, which attains a nearly optimal rate (optimal up to a logarithmic factor). Because the nonlinear wavelet estimator depends on an upper bound of the smoothness index of unknown functions, we finally discuss a data-driven version without any assumption on the estimated functions.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Adaptive and optimal pointwise deconvolution density estimations by wavelets
    Cong Wu
    Xiaochen Zeng
    Na Mi
    [J]. Advances in Computational Mathematics, 2021, 47
  • [2] On pointwise adaptive nonparametric deconvolution
    Goldenshluger, A
    [J]. BERNOULLI, 1999, 5 (05) : 907 - 925
  • [4] ADAPTIVE AND OPTIMAL POINT-WISE ESTIMATIONS FOR DENSITIES IN GARCH-TYPE MODEL BY WAVELETS
    Wu, Cong
    Wang, Jinru
    Zeng, Xiaochen
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (01) : 108 - 126
  • [5] A pointwise lower bound for generalized deconvolution density estimation
    Wu, Cong
    Wang, Jinru
    Zeng, Xiaochen
    [J]. APPLICABLE ANALYSIS, 2021, 100 (08) : 1806 - 1815
  • [6] Supersmooth density estimations over Lp risk by wavelets
    Rui Li
    YouMing Liu
    [J]. Science China Mathematics, 2017, 60 : 1901 - 1922
  • [7] Supersmooth density estimations over Lp risk by wavelets
    LI Rui
    LIU YouMing
    [J]. Science China Mathematics, 2017, 60 (10) : 1901 - 1922
  • [8] Wavelet density deconvolution estimations with heteroscedastic measurement errors
    Zeng, Xiaochen
    Wang, Jinru
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 134 : 79 - 85
  • [9] An Adaptive Pointwise P-norm Regularization for Image Deconvolution
    Ma, Binbin
    Hu, Xiyuan
    Peng, Silong
    [J]. 2019 3RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (ICDSP 2019), 2019, : 12 - 16
  • [10] Optimal iterative density deconvolution
    Hesse, CH
    Meister, A
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (06) : 879 - 900