Radio labelings of cycles

被引:0
|
作者
Zhang, P [1 ]
机构
[1] Western Michigan Univ, Dept Math & Stat, Kalamazoo, MI 49008 USA
关键词
radio labeling; radio number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A radio labeling of a connected graph G is an assignment of distinct positive integers to the vertices of G, with x is an element of V(G) labeled c(x), such that d(u, v) + \c(u) - c(v)\ greater than or equal to 1 + diam G for every two distinct vertices u, v of G, where diam G is the diameter of G. The radio number rn(c) of a radio labeling c of G is the maximum label assigned to a vertex of G. The radio number rn(G) of G is min{rn(c)} over all radio labelings c of G. Radio numbers of cycles are discussed and upper and lower bounds are presented.
引用
收藏
页码:21 / 32
页数:12
相关论文
共 50 条
  • [1] Antipodal Labelings for Cycles
    Juan, Justie Su-Tzu
    Liu, Daphne Der-Fen
    [J]. ARS COMBINATORIA, 2012, 103 : 81 - 96
  • [2] Pseudograceful labelings of cycles
    Youssef, MZ
    [J]. ARS COMBINATORIA, 2005, 76 : 241 - 247
  • [3] EQUITABLE LABELINGS OF CYCLES
    WOJCIECHOWSKI, J
    [J]. JOURNAL OF GRAPH THEORY, 1993, 17 (04) : 531 - 547
  • [4] Polychrome labelings of trees and cycles
    Valentin, K
    [J]. ARS COMBINATORIA, 1999, 52 : 272 - 284
  • [5] Graceful Labelings of the Cycles with a Chord
    Xu Shida
    [J]. 上饶师范学院学报, 1991, (05) : 25 - 31
  • [6] Magic labelings on cycles and wheels
    Baker, Andrew
    Sawada, Joe
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2008, 5165 : 361 - 373
  • [7] Optimal radio labelings of graphs
    Bantva, Devsi
    [J]. DISCRETE MATHEMATICS LETTERS, 2022, 10 : 91 - 98
  • [8] Multilevel distance labelings for paths and cycles
    Liu, DDF
    Zhu, XD
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (03) : 610 - 621
  • [9] Real Number Labelings for Paths and Cycles
    Griggs, Jerrold R.
    Jin, Xiaohua Teresa
    [J]. INTERNET MATHEMATICS, 2007, 4 (01) : 65 - 86
  • [10] Radio labelings of distance graphs
    Cada, Roman
    Ekstein, Jan
    Holub, Premysl
    Togni, Olivier
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) : 2876 - 2884