TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries

被引:51
|
作者
Fu, Yuan-Xiang [1 ,4 ]
Dai, Yao [2 ,4 ]
Pei, Xian-Yinan [1 ,4 ]
Lyu, Shu-Shen [1 ,4 ]
Heng, Yi [3 ,4 ]
Mo, Dong-Chuan [1 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
[4] Guangdong Engn Technol Res Ctr Adv Thermal Contro, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
TiO2; nanorods; Reduced graphene oxide; Anode material; Pseudo-capacitance contribution; Lithium-ion batteries; STORAGE; NANOSHEETS; NANOPARTICLES; NANOTUBES; NANOCOMPOSITE; NANOCRYSTALS; NANOWIRES; INSERTION; CAPACITY; HYBRIDS;
D O I
10.1016/j.apsusc.2019.143553
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene-based composite materials have attracted much attention as anodes for lithium-ion batteries (LIBs). Herein, TiO2 nanorods anchored on reduced graphene oxide (R-TiO2/rGO) composite were fabricated by hydrothermal method after annealing treatment and then explored as anode material for LIBs. The resultant RTiO2/rGO samples possess TiO2 nanorods (with a section width of similar to 5 nm) on the surface of RGO sheets and a specific surface area of 149.5 m(2) g(-1). Notably, the electrodes deliver high reversible capacities of 267 mA h g(-1) at 1 C after 100 cycles and 151 mA h g(-1) at 10 C after 500 cycles (1 C = 168 mA g(-1), voltage window: 0.01-3 V), respectively. Furthermore, the electrodes exhibit a remarkable rate capability of 55 mA h g(-1) at 30 C, and a high coulombic efficiency (similar to 99.5%). Moreover, the sample displays 96 mA h g(-1) at 10 C after 1000 cycles ranged from 1 to 3 V. Such a favorable performance can be ascribed to the RGO sheets that facilitate the transport of Li+ and electrons during the lithium cycling process while, the pseudo-capacitance contribution may also be partially responsible for the excellent energy storage performance. This suggests the R-TiO2/rGO composite as a promising anode material for long-term LIBs.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A high performance TiO2 anode modified by germanium and oxygen vacancies for lithium-ion batteries
    Wang, Zheng
    Lei, Huazhi
    Wang, Guanzheng
    Yuan, Zhentao
    Li, Lu
    Zhan, Zhaolin
    Wang, Xiao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968
  • [22] Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries
    Cao, Huaqiang
    Li, Baojun
    Zhang, Jingxian
    Lian, Fang
    Kong, Xianghua
    Qu, Meizhen
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (19) : 9759 - 9766
  • [23] Impact of Graphene oxide (GO) and reduced Graphene Oxide (rGO) on the TiO2 thin film composite (TiO2: GO/ rGO) photoanodes
    Joshi, A. Sakshi
    Elamurugu, Elangovan
    Leela, S.
    CHEMICAL PHYSICS IMPACT, 2024, 9
  • [24] Preparation and electrochemical performance of TiO2/C composite nanotubes as anode materials of lithium-ion batteries
    Zhang, Jingwei
    Yan, Xiangxia
    Zhang, Jiwei
    Cai, Wei
    Wu, Zhisheng
    Zhang, Zhijun
    JOURNAL OF POWER SOURCES, 2012, 198 : 223 - 228
  • [25] Rutile TiO2 Mesocrystals/Reduced Graphene Oxide with High-Rate and Long-Term Performance for Lithium-Ion Batteries
    Lan, Tongbin
    Qiu, Heyuan
    Xie, Fengyan
    Yang, Jie
    Wei, Mingdeng
    SCIENTIFIC REPORTS, 2015, 5
  • [26] Synthesis of Mesoporous Wall-Structured TiO2 on Reduced Graphene Oxide Nanosheets with High Rate Performance for Lithium-Ion Batteries
    Zhen, Mengmeng
    Sun, Meiqing
    Gao, Guandao
    Liu, Lu
    Zhou, Zhen
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (14) : 5317 - 5322
  • [27] Rutile TiO2 Mesocrystals/Reduced Graphene Oxide with High-Rate and Long-Term Performance for Lithium-Ion Batteries
    Tongbin Lan
    Heyuan Qiu
    Fengyan Xie
    Jie Yang
    Mingdeng Wei
    Scientific Reports, 5
  • [28] TiO2-B nanorods on reduced graphene oxide as anode materials for Li ion batteries
    Zhen, Mengmeng
    Guo, Shengqi
    Gao, Guandao
    Zhou, Zhen
    Liu, Lu
    CHEMICAL COMMUNICATIONS, 2015, 51 (03) : 507 - 510
  • [29] PVDF/TiO2/graphene oxide composite nanofiber membranes serving as separators in lithium-ion batteries
    Khassi, Kajal
    Youssefi, Mostafa
    Semnani, Dariush
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (23)
  • [30] Resilient mesoporous TiO2/graphene nanocomposite for high rate performance lithium-ion batteries
    Qiu, Jingxia
    Lai, Chao
    Wang, Yazhou
    Li, Sheng
    Zhang, Shanqing
    Chemical Engineering Journal, 2014, 256 : 247 - 254