Parameter identification of 1D fractal interpolation functions using bounding volumes

被引:15
|
作者
Manousopoulos, Polychronis [1 ]
Drakopoulos, Vassileios [1 ]
Theoharis, Theoharis [1 ]
机构
[1] Univ Athens, Dept Informat & Telecommun, Athens 15784, Greece
关键词
Fractal interpolation; Iterated function system; Vertical scaling factors; Symmetric difference metric; Hausdorff metric;
D O I
10.1016/j.cam.2009.08.115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractal interpolation functions are very useful in capturing data that exhibit an irregular (non-smooth) structure. Two new methods to identify the vertical scaling factors of such functions are presented. In particular, they minimize the area of the symmetric difference between the bounding volumes of the data points and their transformed images. Comparative results with existing methods are given that establish the proposed ones as attractive alternatives. in general, they outperform existing methods for both low and high compression ratios. Moreover, lower and upper bounds for the vertical scaling factors that are computed by the first method are presented. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1063 / 1082
页数:20
相关论文
共 50 条
  • [1] Parameter Identification of 1D Recurrent Fractal Interpolation Functions with Applications to Imaging and Signal Processing
    Polychronis Manousopoulos
    Vassileios Drakopoulos
    Theoharis Theoharis
    [J]. Journal of Mathematical Imaging and Vision, 2011, 40 : 162 - 170
  • [2] Parameter Identification of 1D Recurrent Fractal Interpolation Functions with Applications to Imaging and Signal Processing
    Manousopoulos, Polychronis
    Drakopoulos, Vassileios
    Theoharis, Theoharis
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (02) : 162 - 170
  • [3] PARAMETER IDENTIFICATION PROBLEM OF THE FRACTAL INTERPOLATION FUNCTIONS
    阮火军
    沙震
    苏维宜
    [J]. Numerical Mathematics(Theory,Methods and Applications), 2003, (02) : 205 - 213
  • [4] Counterexamples in parameter identification problem of the fractal interpolation functions
    Ruan, HJ
    Sha, Z
    Su, WY
    [J]. JOURNAL OF APPROXIMATION THEORY, 2003, 122 (01) : 121 - 128
  • [5] On the parameter identification problem in the plane and the polar fractal interpolation functions
    Dalla, L
    Drakopoulos, V
    [J]. JOURNAL OF APPROXIMATION THEORY, 1999, 101 (02) : 289 - 302
  • [6] Bounding 2d functions by products of 1d functions
    Dorais, Francois
    Hathaway, Dan
    [J]. MATHEMATICAL LOGIC QUARTERLY, 2022, 68 (02) : 202 - 212
  • [7] Parameter Identification for a Class of Bivariate Fractal Interpolation Functions and Constrained Approximation
    Verma, S.
    Viswanathan, P.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (09) : 1109 - 1148
  • [8] Parameter Identification of Bivariate Fractal Interpolation Surfaces by Using Convex Hulls
    Drakopoulos, Vasileios
    Matthes, Dimitrios
    Sgourdos, Dimitrios
    Vijender, Nallapu
    [J]. MATHEMATICS, 2023, 11 (13)
  • [9] Blood Flow Quantification using 1D CFD Parameter Identification
    Brosig, Richard
    Kowarschik, Markus
    Maday, Peter
    Katouzian, Amin
    Demirci, Stefanie
    Navab, Nassir
    [J]. MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [10] 3D Fractal Interpolation Functions
    Al-Jawfi, Rashad A.
    [J]. NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2020, 12 (01) : 120 - 123