Bounding 2d functions by products of 1d functions

被引:1
|
作者
Dorais, Francois [1 ]
Hathaway, Dan [1 ]
机构
[1] Univ Vermont, 82 Univ Pl, Burlington, VT 05405 USA
关键词
D O I
10.1002/malq.202000008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given sets X,Y$X,Y$ and a regular cardinal mu, let phi(X,Y,mu)$\Phi (X,Y,\mu )$ be the statement that for any function f:XxY ->mu$f : X \times Y \rightarrow \mu$, there are functions g1:X ->mu$g_1 : X \rightarrow \mu$ and g2:Y ->mu$g_2 : Y \rightarrow \mu$ such that for all (x,y)is an element of XxY$(x,y) \in X \times Y$, f(x,y)<= max{g1(x),g2(y)}$f(x,y) \le \max \lbrace g_1(x), g_2(y) \rbrace$. In ZFC$\mathsf {ZFC}$, the statement phi(omega 1,omega 1,omega)$\Phi (\omega _1, \omega _1, \omega )$ is false. However, we show the theory ZF+"theclubfilteron omega 1isnormal"+phi(omega 1,omega 1,omega)$\mathsf {ZF}+ \text{``the club filter on $\omega _1$ is normal''} + \Phi (\omega _1, \omega _1, \omega )$ (which is implied by ZF+DC$\mathsf {ZF}+ \mathsf {DC}$+ "V=L(R)$V = L(\mathbb {R})$" + "omega(1) is measurable") implies that for every alpha<omega 1$\alpha < \omega _1$ there is a kappa is an element of(alpha,omega 1)$\kappa \in (\alpha ,\omega _1)$ such that in some inner model, kappa is measurable with Mitchell order >=alpha$\ge \alpha$.
引用
收藏
页码:202 / 212
页数:11
相关论文
共 50 条
  • [1] 1D and 2D STLS dielectric functions for carriers in the lowest subband
    Reyes, JA
    del Castillo-Mussot, M
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (04): : 864 - 875
  • [2] On 2D Green's functions for 1D hexagonal quasi-crystals
    Li, X. -Y.
    Deng, H.
    [J]. PHYSICA B-CONDENSED MATTER, 2013, 430 : 45 - 51
  • [3] Parameter identification of 1D fractal interpolation functions using bounding volumes
    Manousopoulos, Polychronis
    Drakopoulos, Vassileios
    Theoharis, Theoharis
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (04) : 1063 - 1082
  • [4] 1D and 2D finite-difference operators for periodic functions on arbitrary mesh
    Sobczyk, Tadeusz Jan
    [J]. ARCHIVES OF ELECTRICAL ENGINEERING, 2022, 71 (01) : 265 - 275
  • [5] Laser scanners with oscillatory elements: Design and optimization of 1D and 2D scanning functions
    Duma, Virgil-Florin
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 67 : 456 - 476
  • [6] Chromatographic response functions in 1D and 2D chromatography as tools for assessing chemical complexity
    Matos, Joao T. V.
    Duarte, Regina M. B. O.
    Duarte, Armando C.
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2013, 45 : 14 - 23
  • [7] Dynamical Analysis and Big Bang Bifurcations of 1D and 2D Gompertz's Growth Functions
    Rocha, J. Leonel
    Taha, Abdel-Kaddous
    Fournier-Prunaret, D.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (11):
  • [8] Homoclinic and Big Bang Bifurcations of an Embedding of 1D Allee's Functions into a 2D Diffeomorphism
    Leonel Rocha, J.
    Taha, Abdel-Kaddous
    Fournier-Prunaret, D.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09):
  • [9] CORRELATION-FUNCTIONS OF 1D FERMI GAS, 2D-XY MODEL, AND 2D COULOMB GAS
    KLEMM, RA
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (03): : 345 - 345
  • [10] Distance sampling detection functions: 2D or not 2D?
    Borchers, David Louis
    Cox, Martin James
    [J]. BIOMETRICS, 2017, 73 (02) : 593 - 602