Near-optimal Repair of Reed-Solomon Codes with Low Sub-packetization

被引:0
|
作者
Guruswami, Venkatesan [1 ]
Jiang, Haotian [2 ]
机构
[1] Carnegie Mellon Univ, Comp Sci Dept, Pittsburgh, PA 15213 USA
[2] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
关键词
CONSTRUCTIONS;
D O I
10.1109/isit.2019.8849719
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Minimum storage regenerating (MSR) codes are MDS codes which allow for recovery of any single erased symbol with optimal repair bandwidth, based on the smallest possible fraction of the contents downloaded from each of the other symbols. Recently, certain Reed-Solomon codes were constructed which are MSR. However, the sub-packetization of these codes is exponentially large, growing like n(Omega(n)) in the constant-rate regime. In this work, we study the relaxed notion of epsilon-MSR codes, which incur a factor of (1 + epsilon) higher than the optimal repair bandwidth, in the context of Reed-Solomon codes. We give constructions of constant-rate epsilon-MSR Reed-Solomon codes with polynomial sub-packetization of n(O(1/epsilon)) and thereby giving an explicit tradeoff between the repair bandwidth and sub-packetization.
引用
收藏
页码:1077 / 1081
页数:5
相关论文
共 50 条
  • [41] MATRIX FORMALISM OF THE REED-SOLOMON CODES
    Marov, A., V
    Uteshev, A. Yu
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2016, 12 (04): : 4 - 17
  • [42] On error distance of Reed-Solomon codes
    YuJuan Li
    DaQing Wan
    Science in China Series A: Mathematics, 2008, 51 : 1982 - 1988
  • [43] Proximity Gaps for Reed-Solomon Codes
    Ben-Sasson, Eli
    Carmon, Dan
    Ishai, Yuval
    Kopparty, Swastik
    Saraf, Shubhangi
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 900 - 909
  • [44] Quantum Generalized Reed-solomon codes
    Li Zhuo
    Xing Li-Juan
    ACTA PHYSICA SINICA, 2008, 57 (01) : 28 - 30
  • [45] ALGORITHMS AND ARCHITECTURES FOR REED-SOLOMON CODES
    ARAMBEPOLA, B
    CHOOMCHUAY, S
    GEC JOURNAL OF RESEARCH, 1992, 9 (03): : 172 - 184
  • [46] Distance Distribution in Reed-Solomon Codes
    Li, Jiyou
    Wan, Daqing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (05) : 2743 - 2750
  • [47] On the IPP Properties of Reed-Solomon Codes
    Fernandez, Marcel
    Cotrina, Josep
    Soriano, Miguel
    Domingo, Neus
    EMERGING CHALLENGES FOR SECURITY, PRIVACY AND TRUST: 24TH IFIP TC 11 INTERNATIONAL INFORMATION SECURITY CONFERENCE, SEC 2009, PROCEEDINGS, 2009, 297 : 87 - 97
  • [48] Lifted projective Reed-Solomon codes
    Lavauzelle, Julien
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (07) : 1541 - 1575
  • [49] A Topological View of Reed-Solomon Codes
    Besana, Alberto
    Martinez, Cristina
    MATHEMATICS, 2021, 9 (05)
  • [50] On error distance of Reed-Solomon codes
    LI YuJuan1 & WAN DaQing21 Institute of Mathematics
    Science in China(Series A:Mathematics), 2008, (11) : 1982 - 1988