Heegner Points on Cartan Non-split Curves

被引:5
|
作者
Kohen, Daniel [1 ]
Pacetti, Ariel [2 ,3 ]
机构
[1] IMAS CONICET, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Dept Matemat, Fac Ciencias Exactas & Nat, RA-1053 Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, IMAS, RA-1033 Buenos Aires, DF, Argentina
关键词
Cartan curves; Heegner points;
D O I
10.4153/CJM-2015-047-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E/Q be an elliptic curve of conductor N, and let K be an imaginary quadratic field such that the root number of E/K is -1. Let 0 be an order in K and assume that there exists an odd prime p such that p(2) parallel to N, and p is inert in 0. Although there are no Heegner points on X-0 (N) attached to 0, in this article we construct such points on Cartan non-split curves. In order to do that, we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case.
引用
收藏
页码:422 / 444
页数:23
相关论文
共 50 条
  • [41] On non-split abelian extensions II
    Snanou, Noureddine
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (09)
  • [42] p-adic heights of Heegner points on Shimura curves
    Disegni, Daniel
    ALGEBRA & NUMBER THEORY, 2015, 9 (07) : 1571 - 1646
  • [43] THE SPLIT AND NON-SPLIT TREE (D, C)-NUMBER OF A GRAPH
    Safeer, P. A.
    Sadiquali, A.
    Kumar, K. R. Santhosh
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (03): : 511 - 520
  • [44] The least non-split prime in a number field
    Kim, Henry H.
    ARCHIV DER MATHEMATIK, 2021, 117 (05) : 509 - 513
  • [45] The least non-split prime in a number field
    Henry H. Kim
    Archiv der Mathematik, 2021, 117 : 509 - 513
  • [47] The non-split scalar coset in supergravity theories
    Yilmaz, NT
    NUCLEAR PHYSICS B, 2003, 675 (1-2) : 122 - 138
  • [48] THE EQUITABLE NON-SPLIT DOMINATION NUMBER OF GRAPHS
    Esther, Samuel Jebisha
    Naseema, Valiyaveettil Abdul
    Vivik, Joseph veninstine
    MATHEMATICS IN APPLIED SCIENCES AND ENGINEERING, 2024, 5 (03): : 244 - 253
  • [49] Non-split geometry on products of vector bundles
    J Phys A Math Gen, 5 (1455):
  • [50] Non-split geometry on products of vector bundles
    Megged, O
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05): : 1455 - 1465