Stylised Image Generation From Deep Neural Networks

被引:0
|
作者
Peng, Yameng [1 ]
Ciesielski, Vic [1 ]
机构
[1] RMIT Univ, Sch Sci, Melbourne, Vic, Australia
关键词
AI-generated art; Style transfer; Deep neural network; Generative adversarial network;
D O I
10.1109/ijcnn48605.2020.9207331
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of convolutional neural networks is usually image classification but there are increasing studies attempting to reverse this common purpose in order to generate images. One of the most promising research directions is style transfer. This involves rendering the overall texture of an image into an artistic style. There are two common approaches in this field, which are feature representation based methods and generative adversarial network(GAN) based methods. In this paper, we focus on GAN based methods. We observed that most variants of GAN usually need paired data in order to generate the desired result, the training costs are very heavy and the quality of the result is not guaranteed. We propose an improved architecture for generative adversarial models for multi-style rendering. A new loss function configuration enables learning from unpaired data and generation of stylized images with specific artistic styles from normal photographs. A weighted combination of loss functions can control the trade-off between style and content of a stylized image.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Image Inpainting Algorithm Based on Deep Neural Networks
    Lyu, Jianfeng
    Shao, Lizhen
    Lei, Xuemei
    Computer Engineering and Applications, 2023, 59 (20) : 1 - 12
  • [32] Image Privacy Prediction Using Deep Neural Networks
    Tonge, Ashwini
    Caragea, Cornelia
    ACM TRANSACTIONS ON THE WEB, 2020, 14 (02)
  • [33] Histopathological Image Classification with Deep Convolutional Neural Networks
    Alom, Md Zahangir
    Aspiras, Theus
    Taha, Tarek M.
    Asari, Vijayan K.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [34] DEEP CONVOLUTIONAL NEURAL NETWORKS FEATURES FOR IMAGE RETRIEVAL
    Kanaparthi, Suresh kumar
    Raju, U. S. N.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (11): : 2613 - 2626
  • [35] Compression of Deep Neural Networks for Image Instance Retrieval
    Chandrasekhar, Vijay
    Lin, Jie
    Liao, Qianli
    Morere, Olivier
    Veillard, Antoine
    Duan, Lingyu
    Poggio, Tomaso
    2017 DATA COMPRESSION CONFERENCE (DCC), 2017, : 300 - 309
  • [36] Brain CT Image Classification with Deep Neural Networks
    Da, Cheng
    Zhang, Haixian
    Sang, Yongsheng
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 653 - 662
  • [37] Are Deep Neural Networks good for blind image watermarking?
    Vukotic, Vedran
    Chappelier, Vivien
    Furon, Teddy
    2018 10TH IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2018,
  • [38] Reducing Image Compression Artifacts for Deep Neural Networks
    Ma, Li
    Peng, Peixi
    Xing, Peiyin
    Wang, Yaowei
    Tian, Yonghong
    2021 DATA COMPRESSION CONFERENCE (DCC 2021), 2021, : 355 - 355
  • [39] Deep generative neural networks for spectral image processing
    Mishra, Puneet
    ANALYTICA CHIMICA ACTA, 2022, 1191
  • [40] Data Selective Deep Neural Networks For Image Classification
    Mendonca, Marcele O. K.
    Ferreira, Jonathas O.
    Diniz, Paulo S. R.
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1376 - 1380