CONSTRAINT INTERFACE PRECONDITIONING FOR TOPOLOGY OPTIMIZATION PROBLEMS

被引:4
|
作者
Kocvara, M. [1 ,2 ]
Loghin, D. [1 ]
Turner, J. [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Acad Sci Czech Republ, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, CR-18208 Prague 8, Czech Republic
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2016年 / 38卷 / 01期
关键词
topology optimization; domain decomposition; Newton-Krylov; preconditioning; interior point; KRYLOV-SCHUR METHODS; INTERIOR METHODS; DESIGN; NORMS;
D O I
10.1137/140980387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The discretization of constrained nonlinear optimization problems arising in the field of topology optimization yields algebraic systems which are challenging to solve in practice, due to pathological ill-conditioning, strong nonlinearity, and size. In this work we propose a methodology which brings together existing fast algorithms, namely, interior point for the optimization problem and a novel substructuring domain decomposition method for the ensuing large-scale linear systems. The main contribution is the choice of interface preconditioner which allows for the acceleration of the domain decomposition method, leading to performance independent of problem size.
引用
收藏
页码:A128 / A145
页数:18
相关论文
共 50 条
  • [31] Spectral optimization problems with internal constraint
    Bucur, Dorin
    Buttazzo, Giuseppe
    Velichkov, Bozhidar
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (03): : 477 - 495
  • [32] Proactive Distributed Constraint Optimization Problems
    Hoang, Khoi
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 2411 - 2413
  • [33] Translationally Invariant Constraint Optimization Problems
    Aharonov, Dorit
    Irani, Sandy
    Leibniz International Proceedings in Informatics, LIPIcs, 2023, 264
  • [34] Portfolio approaches for constraint optimization problems
    Amadini, Roberto
    Gabbrielli, Maurizio
    Mauro, Jacopo
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2016, 76 (1-2) : 229 - 246
  • [35] Translationally Invariant Constraint Optimization Problems
    Aharonov, Dorit
    Irani, Sandy
    arXiv, 1600,
  • [36] Portfolio approaches for constraint optimization problems
    Roberto Amadini
    Maurizio Gabbrielli
    Jacopo Mauro
    Annals of Mathematics and Artificial Intelligence, 2016, 76 : 229 - 246
  • [37] Bounding the optimum of constraint optimization problems
    de Givry, S
    Verfaillie, G
    Schiex, T
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 97, 1997, 1330 : 405 - 419
  • [38] Exploiting Decomposition in Constraint Optimization Problems
    Kitching, Matthew
    Bacchus, Fahiem
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, 2008, 5202 : 478 - 492
  • [39] Optimization method for linear constraint problems
    Zhang, Kai
    Zhu, Jiahao
    Zhang, Yimin
    Huang, Qiujun
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 51
  • [40] Asymmetric Distributed Constraint Optimization Problems
    Grinshpoun, Tal
    Grubshtein, Alon
    Zivan, Roie
    Netzer, Arnon
    Meisels, Amnon
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2013, 47 : 613 - 647