We calculate the total flux of Hawking radiation from Kerr-(anti)de Sitter black holes by using gravitational anomaly method developed in [S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 95, 011303 (2005)]. We consider the general Kerr-(anti)de Sitter black holes in arbitrary D dimensions with the maximal number [D/2] of independent rotating parameters. We find that the physics near the horizon can be described by an infinite collection of (1+1)-dimensional quantum fields coupled to a set of gauge fields with charges proportional to the azimuthal angular momentums m(i). With the requirement of anomaly cancellation and regularity at the horizon, the Hawking radiation is determined.