K-theoretic invariants for Floer homology

被引:18
|
作者
Sullivan, MG [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00039-002-8267-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper defines two K-theoretic invariants, Wh1 and Wh(2), for individual and one-parameter families of Floor chain complexes. The chain complexes are generated by intersection points of two Lagrangian submanifolds of a symplectic manifold, and the boundary maps are determined by holomorphic curves connecting pains of intersection points. The paper proves that Wh(1) and Wh(2) do not depend on the choice of almost complex structures and are invariant under Harniltonian deformations. The proof of this invariance uses properties of holomorphic curves, parametric gluing theorems, and a stabilization process.
引用
收藏
页码:810 / 872
页数:63
相关论文
共 50 条
  • [31] On the equivalence of Legendrian and transverse invariants in knot Floer homology
    Baldwin, John A.
    Vela-Vick, David Shea
    Vertesi, Vera
    [J]. GEOMETRY & TOPOLOGY, 2013, 17 (02) : 925 - 974
  • [32] FLOER HOMOLOGY FOR 2-TORSION INSTANTON INVARIANTS
    Sasahira, Hirofumi
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (03) : 471 - 523
  • [33] Truncated Heegaard Floer homology and knot concordance invariants
    Linh Truong
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (04): : 1881 - 1901
  • [34] Lagrangian Cobordisms and Legendrian Invariants in Knot Floer Homology
    Baldwin, John A.
    Lidman, Tye
    Wong, C-M Michael
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2022, 71 (01) : 145 - 175
  • [35] Sutured Floer homology and invariants of Legendrian and transverse knots
    Etnyre, John B.
    Vela-Vick, David Shea
    Zarev, Rumen
    [J]. GEOMETRY & TOPOLOGY, 2017, 21 (03) : 1469 - 1582
  • [36] On the K-Theoretic Hall Algebra of a Surface
    Zhao, Yu
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (06) : 4445 - 4486
  • [37] A K-theoretic note on geometric quantization
    Metzler, DS
    [J]. MANUSCRIPTA MATHEMATICA, 1999, 100 (03) : 277 - 289
  • [38] Combinatorial expansions in K-theoretic bases
    Bandlow, Jason
    Morse, Jennifer
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [39] K-theoretic gap labeling for quasicrystals
    Ypma, Fonger
    [J]. GEOMETRIC AND TOPOLOGICAL METHODS FOR QUANTUM FIELD THEORY, 2007, 434 : 247 - 255
  • [40] A K-theoretic note on geometric quantization
    David S. Metzler
    [J]. manuscripta mathematica, 1999, 100 : 277 - 289