High resolution 3D imaging of synchrotron generated microbeams

被引:16
|
作者
Gagliardi, Frank M. [1 ,2 ]
Cornelius, Iwan [3 ,4 ]
Blencowe, Anton [5 ,6 ]
Franich, Rick D. [7 ,8 ]
Geso, Moshi [2 ]
机构
[1] The Alfred, Alfred Hlth Radiat Oncol, Melbourne, Vic 3004, Australia
[2] RMIT Univ, Sch Med Sci, Bundoora, Vic 3083, Australia
[3] Australian Synchrotron, Imaging & Med Beamline, Clayton, Vic 3168, Australia
[4] Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW 2500, Australia
[5] Univ S Australia, Sch Pharm & Med Sci, Div Hlth Sci, Adelaide, SA 5000, Australia
[6] Univ S Australia, Mawson Inst, Div Informat Technol Engn & Environm, Mawson Lakes, SA 5095, Australia
[7] RMIT Univ, Sch Appl Sci, Melbourne, Vic 3000, Australia
[8] RMIT Univ, Hlth Innovat Res Inst, Melbourne, Vic 3000, Australia
关键词
MRT; microbeam imaging; PRESAGE (R) dosimeter; IntMRT; DynMRT; X-RAY MICROBEAMS; MONTE-CARLO-SIMULATION; RADIATION-THERAPY; MICROPLANAR BEAMS; MOSFET DOSIMETRY; TISSUE; BRAIN; RADIOSURGERY; RADIOTHERAPY; GLIOSARCOMA;
D O I
10.1118/1.4935410
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE (R) dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE (R) dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25-50 mu m wide with 200 or 400 mu m peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A 1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 mu m/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE (R) dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery. (C) 2015 American Association of Physicists in Medicine.
引用
收藏
页码:6973 / 6986
页数:14
相关论文
共 50 条
  • [21] Ultra-high-resolution 3D imaging of atherosclerosis in mice with synchrotron differential phase contrast: a proof of concept study
    Bonanno, Gabriele
    Coppo, Simone
    Modregger, Peter
    Pellegrin, Maxime
    Stuber, Annina
    Stampanoni, Marco
    Mazzolai, Lucia
    Stuber, Matthias
    van Heeswijk, Ruud B.
    SCIENTIFIC REPORTS, 2015, 5
  • [22] HIGH SPATIAL AND TEMPORAL RESOLUTION 3D DIGITAL IMAGING MICROSCOPE
    TUFT, RA
    BOWMAN, DS
    CARRINGTON, W
    FAY, FS
    FASEB JOURNAL, 1992, 6 (01): : A34 - A34
  • [23] High-resolution 3D coherent laser radar imaging
    Krause, Brian
    Gatt, Philip
    Embry, Carl
    Buck, Joe
    LASER RADAR TECHNOLOGY AND APPLICATIONS XI, 2006, 6214
  • [24] Positron Range Effects in High Resolution 3D PET Imaging
    Cal-Gonzalez, J.
    Herraiz, J. L.
    Espana, S.
    Desco, M.
    Vaquero, J. J.
    Udias, J. M.
    2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 2788 - +
  • [25] High-resolution 3D light-field imaging
    Geng, Qiang
    Fu, Zhiqiang
    Chen, Shih-Chi
    JOURNAL OF BIOMEDICAL OPTICS, 2020, 25 (10)
  • [26] High-resolution 3D imaging of fixed and cleared organoids
    Dekkers, Johanna F.
    Alieva, Maria
    Wellens, Lianne M.
    Ariese, Hendrikus C. R.
    Jamieson, Paul R.
    Vonk, Annelotte M.
    Amatngalim, Gimano D.
    Hu, Huili
    Oost, Koen C.
    Snippert, Hugo J. G.
    Beekman, Jeffrey M.
    Wehrens, Ellen J.
    Visvader, Jane E.
    Clevers, Hans
    Rios, Anne C.
    NATURE PROTOCOLS, 2019, 14 (06) : 1756 - 1771
  • [27] 3D microphotonic probe for high resolution deep tissue imaging
    Tadayon, Mohammad Amin
    Chaitanya, Shriddha
    Martyniuk, Kelly Marie
    McGowan, Josephine Cecelia
    Roberts, Samantha Pamela
    Denny, Christine Ann
    Lipson, Michal
    OPTICS EXPRESS, 2019, 27 (16): : 22352 - 22362
  • [28] High-resolution 3D imaging of fixed and cleared organoids
    Johanna F. Dekkers
    Maria Alieva
    Lianne M. Wellens
    Hendrikus C. R. Ariese
    Paul R. Jamieson
    Annelotte M. Vonk
    Gimano D. Amatngalim
    Huili Hu
    Koen C. Oost
    Hugo J. G. Snippert
    Jeffrey M. Beekman
    Ellen J. Wehrens
    Jane E. Visvader
    Hans Clevers
    Anne C. Rios
    Nature Protocols, 2019, 14 : 1756 - 1771
  • [29] Ultra-High Resolution 3D Imaging of Whole Cells
    Huang, Fang
    Sirinakis, George
    Allgeyer, Edward S.
    Schroeder, Lena K.
    Duim, Whitney C.
    Kromann, Emil B.
    Phan, Thomy
    Rivera-Molina, Felix E.
    Myers, Jordan R.
    Irnov, Irnov
    Lessard, Mark
    Zhang, Yongdeng
    Handel, Mary Ann
    Jacobs-Wagner, Christine
    Lusk, C. Patrick
    Rothman, James E.
    Toomre, Derek
    Booth, Martin J.
    Bewersdorf, Joerg
    CELL, 2016, 166 (04) : 1028 - 1040
  • [30] High resolution 3D imaging in MIMO radar with sparse array
    Xiaowei Hu
    Ningning Tong
    Xingyu He
    Yuchen Wang
    Multidimensional Systems and Signal Processing, 2018, 29 : 745 - 759