Rational and real positive semidefinite rank can be different

被引:3
|
作者
Fawzi, Hamza [1 ]
Gouveia, Joao [2 ]
Robinson, Richard Z. [3 ]
机构
[1] MIT, LIDS, Cambridge, MA 02139 USA
[2] Univ Coimbra, Dept Math, CMUC, P-3001454 Coimbra, Portugal
[3] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
关键词
Matrix factorization; Positive semidefinite rank; Semidefinite programming; FACTORIZATIONS;
D O I
10.1016/j.orl.2015.11.012
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a p x q nonnegative matrix M, the psd rank of M is the smallest integer k such that there exist k x k real symmetric positive semidefinite matrices A(1), ... ,A(p) and B-1, ... ,B-q such that M-ij = < A(i) , B-j > for i = 1, ... ,p and j = 1, ... ,q. When the entries of M are rational it is natural to consider the rational restricted psd rank of M, where the factors A(i) and B-i are required to have rational entries. It is clear that the rational-restricted psd rank is always an upper bound to the usual psd rank. We show that this inequality may be strict by exhibiting a matrix with psd rank four whose rational-restricted psd rank is strictly greater than four. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 60
页数:2
相关论文
共 50 条
  • [1] Positive semidefinite rank
    Hamza Fawzi
    João Gouveia
    Pablo A. Parrilo
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Mathematical Programming, 2015, 153 : 133 - 177
  • [2] Positive semidefinite rank
    Fawzi, Hamza
    Gouveia, Joao
    Parrilo, Pablo A.
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. MATHEMATICAL PROGRAMMING, 2015, 153 (01) : 133 - 177
  • [3] Completely positive semidefinite rank
    Anupam Prakash
    Jamie Sikora
    Antonios Varvitsiotis
    Zhaohui Wei
    [J]. Mathematical Programming, 2018, 171 : 397 - 431
  • [4] Completely positive semidefinite rank
    Prakash, Anupam
    Sikora, Jamie
    Varvitsiotis, Antonios
    Wei, Zhaohui
    [J]. MATHEMATICAL PROGRAMMING, 2018, 171 (1-2) : 397 - 431
  • [5] Rank inequalities for positive semidefinite matrices
    Lundquist, M
    Barrett, W
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 248 : 91 - 100
  • [6] Positive semidefinite rank and nested spectrahedra
    Kubjas, Kaie
    Robeva, Elina
    Robinson, Richard Z.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (10): : 1952 - 1974
  • [7] Polytopes of Minimum Positive Semidefinite Rank
    João Gouveia
    Richard Z. Robinson
    Rekha R. Thomas
    [J]. Discrete & Computational Geometry, 2013, 50 : 679 - 699
  • [8] Polytopes of Minimum Positive Semidefinite Rank
    Gouveia, Joao
    Robinson, Richard Z.
    Thomas, Rekha R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 679 - 699
  • [9] Matrices with high completely positive semidefinite rank
    Gribling, Sander
    de Laat, David
    Laurent, Monique
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 513 : 122 - 148
  • [10] The Positive Semidefinite Grothendieck Problem with Rank Constraint
    Briet, Jop
    de Oliveira Filho, Fernando Mario
    Vallentin, Frank
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2010, 6198 : 31 - +