Error Estimator for Continued Fraction Approximation of Linear Dynamical System

被引:1
|
作者
Hiruma, Shingo [1 ]
Clenet, Stephane [2 ]
Igarashi, Hajime [3 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Kyoto, Japan
[2] Univ Lille, Arts & Metiers Inst Technol, Lille, France
[3] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido, Japan
关键词
Cauer ladder network (CLN); continued fraction; dynamical systems; error estimation; model order reduction (MOR);
D O I
10.1109/CEFC55061.2022.9940814
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Cauer ladder network (CLN) method, which enables to approximate the eddy current problems by a Cauer circuit, can be generalized to the continued fraction approximation of a transfer function of a finite dimensional linear dynamical system. A new error estimator for the continued fraction approximation is proposed in the paper, which provides guaranteed upper bounds of the error of reduction.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] APPROXIMATION BY CONTINUED-FRACTION OF A POLYNOMIAL REAL ROOT
    THULL, K
    LECTURE NOTES IN COMPUTER SCIENCE, 1984, 174 : 367 - 377
  • [22] Continued fraction approximation for the nuclear matter response function
    Margueron, J.
    Navarro, J.
    Van Giai, Nguyen
    Schuck, P.
    PHYSICAL REVIEW C, 2008, 77 (06):
  • [23] Multiple-correction and continued fraction approximation (II)
    Cao, Xiaodong
    You, Xu
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 261 : 192 - 205
  • [24] CONTINUED-FRACTION APPROXIMATION FOR THE INVERSE BRILLOUIN FUNCTION
    KATRIEL, J
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1987, 139 (01): : 307 - 310
  • [25] A posteriori global error estimator based on the error in the constitutive relation for reduced basis approximation of parametrized linear elastic problems
    Gallimard, L.
    Ryckelynck, D.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4271 - 4284
  • [26] CONTINUED FRACTION SOLUTIONS TO SYSTEMS OF LINEAR EQUATIONS
    SWAIN, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (11): : 1811 - 1821
  • [27] Bounded error estimator design of linear continuous singular random jumping system
    Chen, J. (jackiechan1985@126.com), 1600, Northeast University (27):
  • [28] Approximation of Unbiased Convex Classification Error Rate Estimator
    Gvardinskas, Mindaugas
    Tamosiunaite, Minija
    INFORMATION TECHNOLOGY AND CONTROL, 2016, 45 (02): : 148 - 155
  • [29] Posteriori error estimator for linear elliptic problem
    Chinviriyasit, S.
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2007, 7 : 420 - +
  • [30] COHERENT-POTENTIAL APPROXIMATION WITH THE CONTINUED-FRACTION FORMALISM
    CORDELLI, A
    GROSSO, G
    PARRAVICINI, GP
    PHYSICAL REVIEW B, 1991, 44 (07): : 2946 - 2951