Good points for diophantine approximation

被引:1
|
作者
Berend, Daniel [1 ]
Dubickas, Arturas [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math & Comp Sci, IL-84105 Beer Sheva, Israel
[2] Vilnius State Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania
关键词
Uniform distribution; diophantine approximation; Hausdorff dimension;
D O I
10.1007/s12044-009-0040-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a sequence (x (n) ) (n=1) (a) of real numbers in the interval [0, 1) and a sequence (delta (n) ) (n=1) (a) of positive numbers tending to zero, we consider the size of the set of numbers in [0, 1] which can be 'well approximated' by terms of the first sequence, namely, those y a [0, 1] for which the inequality |y - x (n) | < delta (n) holds for infinitely many positive integers n. We show that the set of 'well approximable' points by a sequence (x (n) ) (n=1) (a) , which is dense in [0, 1], is 'quite large' no matter how fast the sequence (delta (n) ) (n=1) (a) converges to zero. On the other hand, for any sequence of positive numbers (delta (n) ) (n=1) (a) tending to zero, there is a well distributed sequence (x (n) ) (n=1) (a) in the interval [0, 1] such that the set of 'well approximable' points y is 'quite small'.
引用
收藏
页码:423 / 429
页数:7
相关论文
共 50 条
  • [21] On simultaneous Diophantine approximation
    Wolfgang M. Schmidt
    Monatshefte für Mathematik, 2022, 198 : 641 - 650
  • [22] ON INHOMOGENEOUS DIOPHANTINE APPROXIMATION
    CUSICK, TW
    ROCKETT, AM
    SZUSZ, P
    JOURNAL OF NUMBER THEORY, 1994, 48 (03) : 259 - 283
  • [23] Exponents of diophantine approximation
    Bugeaud, Yann
    Laurent, Michel
    DIOPHANTINE GEOMETRY, PROCEEDINGS, 2007, 4 : 101 - +
  • [24] Diophantine approximation in CxQp
    Kovalevskaya, E.
    ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, 2007, : 56 - 71
  • [25] Diophantine approximation and deformation
    Kim, M
    Thakur, DS
    Voloch, JF
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2000, 128 (04): : 585 - 598
  • [26] SIMULTANEOUS DIOPHANTINE APPROXIMATION
    王连祥
    Science China Mathematics, 1991, (10) : 1153 - 1161
  • [27] Note on a diophantine approximation
    Grace, JH
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1918, 17 : 316 - 319
  • [28] Billiard and diophantine approximation
    Florek, Jan
    ACTA ARITHMETICA, 2008, 134 (04) : 317 - 327
  • [29] Diophantine Approximation and Coloring
    Haynes, Alan
    Munday, Sara
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (06): : 567 - 580
  • [30] DIOPHANTINE APPROXIMATION ON CONICS
    O'Dorney, Evan M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1889 - 1905