Lyapunov Exponents and Invariant Measures on a Projective Bundle

被引:2
|
作者
Osipenko, G. S. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Morse spectrum; chain-recurrent set; projective bundle; invariant measure; symbolic image; flow on a graph; averaging with respect to a measure;
D O I
10.1134/S0001434617030245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A discrete dynamical system generated by a diffeomorphism f on a compact manifold is considered. The Morse spectrum is the limit set of Lyapunov exponents of periodic pseudotra-jectories. It is proved that the Morse spectrum coincides with the set of averagings of the function phi(x, e) - ln |Df(x)e| over the invariant measures of the mapping induced by the differential Df on the projective bundle.
引用
收藏
页码:666 / 676
页数:11
相关论文
共 50 条
  • [41] SCALE-INVARIANT LYAPUNOV EXPONENTS FOR CLASSICAL HAMILTONIAN-SYSTEMS
    SELIGMAN, TH
    VERBAARSCHOT, JJM
    ZIRNBAUER, MR
    PHYSICS LETTERS A, 1985, 110 (05) : 231 - 234
  • [42] Invariant measure and Lyapunov exponents for birational maps of P2
    Diller, J
    COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (04) : 754 - 780
  • [43] Invariant measures and Kyapunov exponents for stochastic Mathieu system
    Rong, HW
    Meng, G
    Wang, XD
    Xu, W
    Fang, T
    NONLINEAR DYNAMICS, 2002, 30 (04) : 313 - 321
  • [44] Lyapunov Exponents
    Weiss, Christian
    TWISTED TEICHMULLER CURVES, 2014, 2104 : 127 - 133
  • [45] Lyapunov exponents of families of morphisms of metrized vector bundles as functions on the base of the bundle
    Karpuk, M. V.
    DIFFERENTIAL EQUATIONS, 2014, 50 (10) : 1322 - 1328
  • [46] Lyapunov exponents of families of morphisms of metrized vector bundles as functions on the base of the bundle
    M. V. Karpuk
    Differential Equations, 2014, 50 : 1322 - 1328
  • [47] Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow
    Alex Eskin
    Maxim Kontsevich
    Anton Zorich
    Publications mathématiques de l'IHÉS, 2014, 120 : 207 - 333
  • [48] Invariant Measures for Large Automorphism Groups of Projective Surfaces
    Cantat, Serge
    Dujardin, Romain
    TRANSFORMATION GROUPS, 2025, 30 (01) : 75 - 145
  • [49] Invariant Measure and Lyapunov Exponents for two Dimensional Parametrically Excited Random Systems
    Haiwu, Rong
    Wei, Xu
    Tong, Fang
    Ying Yong Li Xue Xue Bao/Chinese Journal of Applied Mechanics, 16 (01): : 108 - 115
  • [50] Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures
    Arnaud, M. -C.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (06): : 989 - 1007